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Abstract

One of the most widely used models for studying the geographical economics of climate change is

the Regional Integrated model of Climate and the Economy (RICE). In this paper, we investigate how

cooperation and competition arise in regional climate policies under the RICE framework from the stand-

points of game theory and optimal control. First, we show that the RICE model is inherently a dynamic

game. Second, we study both cooperative and non-cooperative solutions to this RICE dynamic game.

In cooperative settings, we investigate the global social welfare equilibrium that maximizes the weighted

and cumulative social welfare across regions. We next divide the regions into two clusters: developed and

developing, and look at the social welfare frontier under the notion of Pareto optimality. We also present

a receding horizon approach to approximate the global social welfare equilibrium for robustness and com-

putational efficiency. For non-cooperative settings, we study best-response dynamics and open-loop Nash

equilibrium of the RICE game. A Recursive Best-response Algorithm for Dynamic Games (RBA-DG) is

proposed to describe the sequences of best-response decisions for dynamic games, which indicates conver-

gence to open-loop Nash equilibrium when applied to the RICE game by numerical studies. We also study

online receding horizon feedback decisions of the RICE game. A Receding Horizon Feedback Algorithm

for Dynamic Games (RHFA-DG) is proposed. All these proposed solution concepts are implemented and

open sourced using the latest updated parameters and data. The results reveal how game theory may

be used to facilitate international negotiations towards consensus on regional climate-change mitigation

policies, as well as how cooperative and competitive regional relations shape climate change for our future.

1 Introduction

The issue of global warming has emerged as a central international environmental question over decades.

As a consequence of industrialization and economic development, human-caused emissions of greenhouse

gases, most notably carbon dioxide (CO2), contribute to a significant increase in the mean atmospheric

temperature by 1.15◦C relative to the pre-industrial age [35]. This temperature deviation yields significant

changes in the global climate and ecosystem, including increasing larger wildfires [3], sea level rise [15],

melting of ice lands [40], and so on. To assess the damages of anthropogenic greenhouse gases, especially

CO2, on society, scientists in this field employ the Integrated Assessment Models (IAMs) [2, 23, 32]. IAMs

simulate the dynamics of the economy-climate interactions by incorporating mathematical models from

both economics and geophysical science. The Dynamic Integrated model of Climate and Economy (DICE)
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[30,32], developed by William Nordhaus, who received the 2018 Nobel Memorial Prize in Economic Sciences

in large part for this body of work, is one of the most well-known IAMs. The DICE model is a globally

aggregated model and treats global warming as a single-agent problem. Considering the crucial aspect of

regional socio-economic heterogeneity, Nordhaus also proposed the Regional Integrated model of Climate

and the Economy (RICE) [28, 33], which is a decentralized version of the DICE model. By dividing the

world into several regions, the RICE model takes the vantage point in determining how multiple regions

may jointly design climate policies and cope with the global warming issue.

Global society has been making efforts in developing sensible strategies to achieve international consensus

on climate-change mitigation over the last several decades. There are several important international agree-

ments on climate change. In 1992, the United Nations Framework Convention on Climate Change (UNFCC)

was the first formal global treaty to be signed by 154 (now 198) parties to explicitly address climate change,

which established an annual forum for international discussions aimed at stabilizing greenhouse gas concen-

trations in the atmosphere [5]. These meetings produced the well-known Kyoto Protocol [6], Copenhagen

Accord [38], and Paris Agreement [41]. The Kyoto Protocol was a binding agreement that was signed in 1997

and expired in 2012. The Kyoto Protocol called for developed countries to reduce emissions by an average of

5 percent below pre-industrial levels, and established a system to monitor countries’ progress [6]. The meet-

ing in Copenhagen in 2009 was called to establish a replacement for the Kyoto Protocol. Although it failed

to establish binding emission limits after 2012, countries recognized “the scientific view that the increase

in global temperature should be below 2◦C” [38]. The Paris Agreement was signed in 2016 and called for

all countries to set emissions-reduction pledges/targets, with the goals of preventing the mean atmospheric

temperature from rising 2◦C above pre-industrial levels and pursuing efforts to keep it below 1.5◦C [41]. De-

spite intensified diplomacy in these meetings, most existing climate-change treaties are neither sufficient nor

mandatory, some of which even stalled due to a lack of political will [34, 37]. Due to economic competition

and political divide, an international enforceable agreement on specific emission-reduction control has not

yet been reached.

There are two coupled but conflicting sides in regional emission reduction policies: Regions are affected by

the same global climate system; they also decide their climate strategies to benefit their individual economic

benefits and political self-interests. Therefore, it is actually a decision-making process where competition

occurs. Game theory has been a fundamental tool in explaining decision-making of independent and self-

interested players in a strategic and competitive setting [45]. In a game, each player takes its action to

maximize its payoff function. The payoff function of each player relies on not only its own action, but also

other players’ actions, resulting in inherent competitions. A common solution concept in game theory is Nash

equilibrium under which no one will benefit by changing its action when others remain unchanged [22]. In

the RICE model, the regional climate strategies are associated with a common global climate dynamic, and

as a result, the climate policy decisions fall into the concept of dynamic games established from the interface

between game theory and optimal control theory [4]. In a dynamic game, the strategic interaction among

players recurs over time. The group of players is associated with a dynamical game state that depends on all

players’ actions. The goal is for each player to take an action to maximize each player’s cumulative payoff

function over time that depends on the game state, its own action, and other players’ actions.

In this paper, we investigate how cooperation and competition in climate policy across the various regions

in the globe under the RICE framework affect the formation of international climate treaties, the implemen-

tation of regional climate-change mitigation measures, and the resulting implications of competitive/non-
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cooperative decisions for climate change. In control community, there are a few efforts on studying the

climate-change mitigation measures. The work of [25] provided a tutorial introduction to the DICE model

and proposed a receding horizon approach to DICE. A bi-objective optimal control problem (OCP) on

DICE was studied, objectives of which are maximizing social welfare and minimizing atmospheric temper-

ature deviation [20]. The work of [8] studied a multi-objective stochastic OCP on DICE, which accounts

for stochastic disturbances and aligns with physical targets posed by international agreements on climate

change mitigation.

The contributions of this work are summarized as follows. We show that the RICE model is inherently a

dynamic game, termed the RICE game. Both cooperative and non-cooperative solutions to this RICE game

are considered:

• For cooperative solutions, we study global social welfare maximization problem where all regions take

actions that maximize the weighted and cumulative social welfare across all regions, which serves as

a benchmark. Next, we classify regions into two clusters of developed regions and developing regions,

and consider the concept of Pareto equilibrium, describing that any attempt to benefit one cluster

by deviating to some outcome will necessarily result in a loss in satisfaction of the other cluster. Our

simulation results show that under different Pareto equilibria, the social welfare of developed regions

and developing regions would not drastically change, and the atmospheric temperature deviation is

quite robust. Finally, we apply a receding horizon approach to approximate the solution to the global

social welfare maximization problem. The receding horizon control presents a favorable approximation

property.

• For non-cooperative solutions, we study best-response dynamics and open-loop Nash equilibrium of the

RICE game. Multiple plays/episodes of dynamic games are considered, where each player chooses the

sequence of control for the next episode that maximizes its social welfare given other players’ sequences

of control in the current episode.A Recursive Best-response Algorithm for Dynamic Games (RBA-DG)

is proposed. By applying it to the RICE game, simulation results show that the obtained sequence

of actions converges to a steady point, indicating that RBA-DG is useful for computing the open-

loop Nash equilibrium of the RICE game. We also study online receding horizon feedback decisions

of the RICE game. A single play of dynamic games is considered, where players observe the current

game state and other players’ actions, and then apply a receding-horizon feedback decision-making

approach to predict the action in the future. A Receding Horizon Feedback Algorithm for Dynamic

Games (RHFA-DG) is proposed. By implementing it over the RICE game, simulation results show

that with the nature of competition, receding horizon, and myopic assumption about other players’

actions, the emission-reduction rates become lower in most time steps.

The implementations of our studies are based on the RICE-2010 model with a few parameters updated

from the latest updated data. There have been a few implementations in the literature on DICE and RICE [1,

18,19,24,31]. As for the DICE model, Nordhaus provided a GAMS implementation of the DICE-2013R model

with the objective of solving a social welfare maximization problem [31,32]. Faulwasser, Kellett and Weller

published a Matlab implementation of the DICE-2013R model, which replicated the basic functionality of

GAMS implementation [24]. Further, Faulwasser, Kellett and Weller released a Matlab implementation of

the MPC-DICE model which uses model predictive control to approximately solve the DICE OCP. As for

the RICE model, Nordhaus provided an Excel implementation (without optimization module), and a GAMS
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implementation (which is currently inaccessible) [31]. Anthoff and Errickson created an implementation in

Julia programming language [1], which re-coded the Excel version of RICE without optimization module [1].

Our implementations of various solution concepts for RICE under the proposed dynamic-game perspective

are developed relying on these previous efforts. We have open-sourced our implementation as a RICE-GAME

framework, with a Matlab and Casadi-based implementation of RICE dynamic game, Preprint at arXiv.org,

code for download at [12].

The paper is organized as follows. Section 2 provides preliminaries of the DICE/RICE model and dynamic

games. Section 3 represents the RICE model as a dynamic game. Section 4 considers cooperative solutions for

the RICE game under three cooperative settings: global social welfare maximization, RICE Pareto frontier,

and receding-horizon global social welfare maximization. Two non-cooperative settings are then considered.

Best-response dynamics and open-loop Nash equilibrium for the RICE game are studied in Section 5. A

receding horizon feedback planning approach for RICE game is proposed in Section 6. The paper ends with

concluding remarks in Section 7.

2 Preliminaries

In this section, we introduce some preliminary knowledge on the DICE/RICE model and dynamic games.

2.1 The DICE Model

The DICE model [32] is one of integrated assessment models (IAMs) that simulate the interplay between

economy and climate, and quantify the social cost of CO2 emissions. The DICE model operates in periods

of 5 years and its latest version starts from the year 2015 as the initial year. The DICE model is composed

of two sectors (see Fig. 1): a geophysical sector (blue dotted block) that accounts for the global interaction

between carbon and temperature, and an economic sector that is globally aggregated for the world total

(red dotted block).

Figure 1: A block diagram for the DICE model.

Geophysical and Economic Sectors. In the geophysical sector, the DICE model considers CO2 emissions

as the major contributor to climate change. The geophysical sector is constructed as follows.

• There are two main sources of CO2 emissions: industrial CO2 emissions related to the carbon intensity

4

arXiv.org


(denoted by σ) of global economic activities and natural CO2 emissions due to land use changes, Eland.

The global CO2 emissions as the sum of industrial and natural emissions drive the carbon cycle of the

Earth.

• The Carbon dynamics are described by a three-reservoir model [36] on the carbon flows among three

reservoirs: the atmosphere, the upper oceans and biosphere, and the deep oceans. The average carbon

masses in those reservoirs are represented by MAT, MUP, and MLO, respectively.

• Accumulations of CO2 emissions and other greenhouse gases warm the Earth’s surface through en-

hanced radiative forcing. Radiative forcing resulted by CO2 emissions has a logarithmic dependence

on the atmospheric carbon mass; greenhouse gases other than CO2 emissions contribute to exogenous

radiative forcing FEX.

• The rise in temperature at the Earth’s surface is driven by radiative forcing. Temperature dynamics

are captured by a two-layer model [42]. Given the temperature in year 1750 as zero reference, TAT

and TLO represent the temperature deviation in the atmosphere and in the lower ocean from those of

the reference year, respectively.

The economic sector of DICE is based on the Cobb-Douglas production function [14], where gross economic

output is determined by total factor productivity A, labor L, and capitalK. The total factor productivity and

labor evolve exogenously; the capital dynamics follows the Solow-Swan model [44] where capital depreciates

over time and is replenished by investment.

Climate-Economy Feedback. The DICE model establishes two feedback loops between the geophysical

sector and the economic sector: (i) the industrial CO2 emissions are a by-product of economic activities; (ii)

the atmospheric temperature rise has an negative impact on economic production.

Control Inputs. The DICE model assumes two control decisions: the saving rate s and the emission-

reduction rate µ. The saving rate s represents the ratio of investment to the economic output; the emission-

reduction rate µ represents the rate at which industrial CO2 emissions are reduced. By adjusting the saving

rate, it is possible to balance consumption today and consumption in the future. By increasing the emission-

reduction rate to slow down CO2 emissions as a “climate investment”, the currently available amount of

consumption and investment will be reduced [32]. This climate investment will lower climate damage and

therefore potentially increase consumption in the future.

System Outputs. The economic output is counted as output net of emission abatement cost and climate

damage. Social welfare is calculated as the discounted sum of the population-weighted utility of per capita

consumption.

DICE Variables. All variables described above are time-dependent, although not explicitly written. The vari-

ables TAT, TLO,MAT,MUP,MLO and FEX belong to the geophysical sector, whereas the variables K,A,L, σ,

and Eland belong to the economic sector. Some variables evolve independently, whereas others evolve in an

interdependent manner. The variables that evolve independently as exogenous signals are FEX, A, L, σ, and

Eland; the variables evolving in an interdependent manner are TAT, TLO,MAT,MUP,MLO, and K.
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Figure 2: The workflow of the RICE-2011 model.

2.2 The RICE Model

The RICE model is a variant of the DICE model that accounts for regional climate damages and control

decisions [28, 29]. Since being proposed in 1990s, calibration of the RICE model has been updated several

times, and the latest version of the RICE model is the RICE-2011 model on which our study is based. The

RICE-2011 model uses a time-step of 10 years, starting from the year 2005 as the initial year.

The RICE-2011 model integrates a global geophysical sector with regional economic sectors (see Fig. 2):

• The global geophysical sector of the RICE-2011 model contains the same carbon dynamics and tem-

perature dynamics as the DICE model;

• The regional economic sectors of the RICE-2011 model disaggregates the world into 12 regions (US,

EU, Japan, Russia, Non-Russian Eurasia, China, India, Middle East, Africa, Latin America, other high

income countries, and other Asian countries), each of which is equipped with region-specific climate

damage level, economic factors, and saving rate and emission-reduction rate as local control inputs.

RICE Variables. The variables TAT, TLO,MAT,MUP, MLO, and FEX in the global geophysical sector of

the RICE-2011 model are inherited from the DICE model, while the variables Ki, Ai, Li, σi, and Eland
i , i ∈

{1, 2, . . . , 12}, in the regional economic sectors of the RICE-2011 model correspondingly depend on specific

regions.

2.3 Dynamic Games

The theory of dynamic games lies in the interface between game theory and optimal control, which involves

a dynamic decision process for multiple players [4]. An n-player discrete-time dynamic game over a finite

horizon is defined as follows.

Dynamic Game. The n players are indexed in V := {1, 2, . . . , n}; time is discrete with the steps indexed

in T := {0, 1, . . . , T}. Each player can manipulate the game through its control decisions, and the control

decision space of player i ∈ V is denoted by Ui ⊆ Rd. At each time step t = 0, . . . , T , the decision executed

by player i is denoted by ui(t) ∈ Ui. We also use u(t) = [u>1 (t); . . . ; u>n (t)], Ui = [u>i (0); . . . ; u>i (T )] and

U = [U1; . . . ; Un] to represent the all-player decision profile at time t, the player-i decision throughout the
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time horizon, and the decision profile for all players and for all time stpes. The control decisions of all players

excluding player i at time step t is denoted by u−i(t), and the control decisions of all players excluding player

i over the entire horizon is represented by U−i.

For each t = 0, 1, . . . , T , the group of players are associated with a dynamical state x(t) ⊆ Rm that evolves

according to

x(t+ 1) = f(t,x(t),u(t)), x(0) = x0, t = 0, . . . , T, (1)

with x0 being the initial state. At each time t = 0, . . . , T , upon playing ui(t), the agent i receives a

payoff gi(x(t),ui(t),u−i(t)) ∈ R given other players’ actions u−i(t) and the current state x(t), where

gi(x(t),ui(t),u−i(t)) is a continuous function with respect to x(t), ui(t), and u−i(t). The cumulative payoff

of agent i throughout the time horizon is therefore

Ji(X,Ui,U−i) =
T∑
t=0

gi(x(t),ui(t),u−i(t)) (2)

where X = (x>(0), . . . ,x>(T ))>. Each player’s goal is to make decisions for maximizing its cumulative payoff

function; the system dynamics produces a terminal state x(T + 1) towards the end of the time horizon as a

result of those decisions.

In what follows, we present cooperative and non-cooperative settings as well as three solution concepts

for discrete-time dynamic game: Pareto solution, open loop Nash equilibrium (NE) and feedback Nash

equilibrium.

2.3.1 Cooperative Decisions: Pareto Solutions

In the cooperative setting, players are able to communicate and cooperate with each other to achieve

their objectives, and all players know the system dynamics and payoff functions of other players. Pareto

optimality is an efficiency concept [26] under which any attempt to benefit one player by deviating to some

other outcome will necessarily result in a loss in satisfaction of another player.

Definition 1 (Pareto Efficiency) A decision profile Up is Pareto efficient for the dynamic game if there

does not exist another decision profile U such that

(i) there holds for all i ∈ V Ji(X
p,Up

i ,U
p
−i) ≤ Ji(X,Ui,U−i);

(ii) there exists at least one k ∈ V such that Jk(X
p,Up

k,U
p
−k) < Jk(X,Uk,U−k)

Here X and Xp are the states evolved under U and Up, respectively. The set of all Pareto solution is called

the Pareto frontier.

The following Lemma provides a convenient way of computing Pareto solutions [17, Lemma 6.1].

Lemma 1 Consider a set of parameters C := {c = (c1, . . . , cn) : ci ≥ 0, and
∑n

i=1 ci = 1}. If a decision

profile Up is such that

Up ∈ arg max
U

{ n∑
i=1

ciJi
}
, (3)

for some c ∈ C, then Up is Pareto efficient.
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2.3.2 Non-Cooperative Setting: Nash Equilibriums

In the non-cooperative setting of games, Nash equilibriums (NE) mark one of the most important solution

concepts. For a dynamic game, the information structure in terms of what players know before a decision is

made at a particular time becomes critical in properly defining NE. There are two basic types of information

structure: the open loop information structure and the feedback information structure.

In the open loop information structure, each player knows the initial state x0, and then plans at t = 0 all

the control decisions ui(t) for t ∈ T. Consequently, the open loop control decision of ui(t) can be written as

ui(t) = ui(t,x0). (4)

Denote an open loop decision profile by U∗ where U∗i := [u∗i (0,x0); . . . ; u
∗
i (T,x0)], i ∈ V. We introduce the

following definition. Here with slight abuse of notation we also write Ji(X,Ui,U−i) as Ji(x0,Ui,U−i) noting

the fact that X is uniquely determined by x0 and (Ui,U−i).

Definition 2 (Open Loop NE) Given the initial state x0, a control decision profile U∗ is said to be an

open loop Nash equilibrium control decision profile if there holds for all i ∈ V and all Ui that

Ji(x0,U
∗
i ,U

∗
−i) ≥ Ji(x0,Ui,U

∗
−i). (5)

In the feedback information structure, at time step t ∈ T, each player knows the current system state

x(t). As a consequence, each player i ∈ V may employ a feedback law πi : T × X → Ui to determine its

decisions by

ui(t) = πi(t,x(t)). (6)

In this case, we denote the overall feedback law as π = [π1; . . . ;πn], and then write Ji(X,Ui,U−i) as

Ji(x0,πi,π−i) noting (X,Ui,U−i) is uniquely determined by x0 and π. We introduce the following definition.

Definition 3 (Feedback NE) For any initial state x0, a feedback profile π∗ is said to be a feedback Nash

equilibrium for the dynamic game if there holds for all i ∈ V and all πi that

Ji(x0,π
∗
i ,π

∗
−i) ≥ Ji(x0,πi,π

∗
−i). (7)

3 RICE as a Dynamic Game

In this section, we show that the RICE model is inherently a dynamic game where regional saving rates

and emission-reduction rates regulate global temperature, and then the global temperature has impact on

regional social welfares through climate damage. Our presentation is based on the RICE-2011 model with

slight modifications, but the nature of being a dynamic game is embedded in all RICE models.

There are 12 regions in the RICE-2011 model. Each region is considered a player and the regions are

indexed in V = {1, 2, . . . , n} with n = 12. We operate the RICE dynamic game in periods of 5 years, starting

from the year 2020 as the initial year1. Taking the discrete time step index T = {0, 1, . . . , T}, the relation

between an actual calendar year and the corresponding discrete time step is determined by

year(t) = year(0) + 5t, year(0) = 2020. (8)

Note that although most variables in the RICE-2011 model are defined as flows per year and only some

variables are in flows per decade [29, Supplementary Material], all variables in this present of the RICE

dynamic game are defined as flows per year.

1The RICE-2011 model operates in periods of 10 years starting from 2005.
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3.1 System Dynamics

We define the dynamical state of the RICE model at time step t ∈ T as

x(t) = [TAT(t);TLO(t);MAT(t);MUP(t);MLO(t);K1(t); . . . ;Kn(t)] ∈ Rn+5. (9)

Let the control decision of region i ∈ V at time step t ∈ T be

ui(t) = [si(t);µi(t)]
> := [ui[1](t); ui[2](t)]

> ∈ [0, 1]2. (10)

Consequently, the control decisions of the RICE dynamic game at time step t ∈ T of all players are

u(t) = [s1(t);µ1(t); . . . ; sn(t);µn(t)] ∈ [0, 1]24. (11)

According to the RICE model, the dynamics of x(t) can be written as

x(t+ 1) = f(t,x(t),u(t)), x(0) = x0, t ∈ T, (12)

where f := [f1; f2; . . . ; fn+5]
> follows from the interdependency among the geophysical signals and the

economic signals, and the feedback between the two sectors. In what follows, we briefly describe the form

of entries in the dynamics f . For a more detailed description, please refer to [29].

Carbon dynamics. There are three carbon reservoirs: the atmosphere, the upper oceans and the biosphere,

and the deep oceans. The atmospheric carbon reservoir has an additional input, the global CO2 emissions

E(t) that is related to economic activities and land use at time t. The carbon dynamics for carbon transition

among the three reservoirs are described by
MAT(t+ 1)

MUP(t+ 1)

MLO(t+ 1)

 =


ζ11 ζ12 0

ζ21 ζ22 ζ23

0 ζ32 ζ33



MAT(t)

MUP(t)

MLO(t)

+


ξ1

0

0

E(t), (13)

where ζ11, ζ12, ζ21, ζ22, ζ23, ζ32, ζ33 and ξ1 are constant parameters.

Temperature dynamics. The evolution of the atmospheric and ocean temperature is governed by the

following equations: [
TAT(t+ 1)

TLO(t+ 1)

]
=

[
φ11 φ12

φ21 φ22

][
TAT(t)

TLO(t)

]
+

[
ξ2

0

]
F (t), (14)

where φ11, φ12, φ21, φ22 and ξ2 are constant parameters, and the radiative forcing at time step t, F (t), is

computed as

F (t) = η log2(
MAT(t)

MAT,1750
) + FEX(t). (15)

Here η and MAT,1750 are constants, and FEX(t) represents radiative forcing due to other greenhouse gases

at time step t.

Economic dynamics. The economy of each region i ∈ V at time step t ∈ T follows from the Cobb-Douglas

production function [14]:

Yi(t) = Ai(t)Ki(t)
γi(t)Li(t)

1−γi , (16)

where Yi(t), Ai(t),Ki(t) and Li(t) represent region i’s gross economic output, total factor productivity,

capital stock and labor at time step t, respectively. Here, γi, i ∈ V, are constant parameters.
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Economy-climate feedback. Global CO2 emissions at time step t are the sum of natural emissions because

of each region’s land use at time step t, Eland
i (t), and industrial emissions resulted from each region’s economic

activities at time step t. Each region i’s industrial emissions depend on each region i’s carbon intensity at

time step t, σi(t), which is an exogenous variable. Consequently, global CO2 emissions at time step t is

described by

E(t) =
n∑
i=1

(
σi(t)(1− µi(t))Yi(t) + Eland

i (t)
)
, (17)

where µi(t), i ∈ V, t ∈ T, are control decisions representing the emission-reduction rate.

The emission abatement cost fraction as the percentage of gross economic output spent on emission-

reduction effort at time step t is given by

Λi(t) = 1− θ[1]i (t)µi(t)
θ
[2]
i , (18)

where θ
[2]
i , and θ

[1]
i (t), i ∈ V, t ∈ T, are parameters. The parameters θ

[1]
i (t), i ∈ V, t ∈ T, are calculated by

θ
[1]
i (t) =

pbi

1000 · θ[2]i
(1− δpbi )t−1 · σi(t), (19)

where pbi, i ∈ V, represent the price of backstop technology at time step t = 0 for region i to replace all

carbon fuels, and δpbi , i ∈ V, are constant parameters. The damage function Ωi(t) is the percentage of gross

economic output damaged by temperature rising. As a result, the net economic output Qi(t) (economic

output after the emission-reduction spending and climate damage), is given by

Qi(t) = Ωi(t)Λi(t)Yi(t). (20)

The Solow-Swan model [44] gives a description of capital accumulation of each region i ∈ V:

Ki(t+ 1) = (1− δKi )5Ki(t) + 5si(t)Qi(t), (21)

where δKi , i ∈ V, are constant parameters, and si(t), i ∈ V, t ∈ T, are control decisions representing the saving

rate, i.e., the percentage of net economic output invested in capital.

3.2 Damage Functions

The rising atmospheric temperature has a negative impact on economic production. Although there are

various specifications offering various estimates of the damage function, there are no substantial discrepancies

among them [7]. In the RICE-2011 model, damages to economic gross output caused by rising temperatures

are considered to be region-specific and dependent on factors such as atmospheric temperature deviation,

sea level rises, and atmospheric carbon mass. However, the form of the damage function of the RICE-2011

model is not given explicitly. In the current study, a simplified form of the damage function is employed,

which only depends on the rising atmospheric temperature deviation:

Ωi(t) = 1− a[1]i T
AT(t)− a[2]i T

AT(t)a
[3]
i , (22)

where a
[1]
i , a

[2]
i , and a

[3]
i , i ∈ V, are parameters calibrated to yield a certain amount of damage loss to regional

economic gross output. Each region’s damage loss to its regional economic gross output at 2◦C is presented

in Table 1. For example, India would suffer a damage loss of 1.55% to its economic gross output when the

atmospheric temperature deviation reaches 2◦C.
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US EU Japan Russia Eurasia China

Loss 0.56% 0.64% 0.65% 0.46% 0.52% 0.66%

India MidEast Africa LatAm OHI OthAsia

Loss 1.55% 1.19% 1.47% 0.66% 0.62% 1.04%

Table 1: Each region’s damage loss with respect to its gross economic output when atmospheric deviation

is at 2◦C.

3.3 Payoff Functions

Note that from the net economic output Qi(t), a total amount of si(t)Qi(t) has been made as investment.

The remaining part Ci(t) = (1− si(t))Qi(t) can then be used for consumption. In RICE models, for region

i, the social welfare of the population Li(t) consuming Ci(t) of economic output at time t is defined by the

population-weighted utility of per capita consumption

gi(Ci(t), Li(t)) = Li(t) ·
(Ci(t)
Li(t)

)1−αi − 1

1− αi
, (23)

where αi is a constant. The cumulative social welfare of region i across the time horizon is then given by

Ji =

T∑
t=0

gi(Ci(t), Li(t))

(1 + ρi)5t

=
T∑
t=0

([Ai(t)Li(t)1+αi−γi

(1− αi)(1 + ρi)5t

(
1− ui[2](t)

)(
1− a[1]i x1(t)− a[2]i x1(t)

a
[3]
i

)(
1− θ[1]i (t)ui[1](t)

θ
[2]
i

)
x5+i(t)

γi
]

− Li(t)

(1− αi)(1 + ρi)5t

)
:= Ji(X,Ui,U−i) (24)

where ρi is a constant discounting factor. For each region i ∈ V, naturally it will attempt to maximize its

cumulative social welfare.

We have now formally represented the RICE-2011 model as a dynamic game, termed the RICE game

where the regions as players seek to plan their control decisions in emission-reduction rate and saving rate

for the entire time horizon (600 years) Ui = [si(0);µi(0); . . . ; si(T );µi(T )] so as to maximize their payoff

functions (24) subject to the underlying dynamical system (12), represented in (14)-(21). In what follows

when we implement the proposed RICE game, the values of the initial state x(0) and the parameters are

updated in the following way: the initial state are calibrated to match the data in the year 2020; the

parameters in the geophysical sector use the latest updated values in the DICE-2016 model [30], while the

parameters in the regional economic sector remain unchanged.

3.4 The Social Cost of CO2

The social cost of CO2 (SCC) is a central concept for understanding and implementing climate change

policies. In a market setting like a cap-and-trade regime, the SCC would serve as the trading price of carbon

emission permits. In a carbon-tax regime, the SCC would be the carbon tax for the regions who want to

emit carbon emissions. The SCC in a particular year is defined as the decrease in aggregate consumption in
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that year that would change the current expected value of social welfare by the same amount as a one unit

increase in carbon emissions in that year [27]. The regional SCC is then given by

SCCi(t) = −1000 · ∂Ji
∂Ei(t)

/ ∂Ji
∂Ci(t)

= −1000 · ∂Ci(t)
∂Ei(t)

. (25)

4 The RICE Game: Cooperative Solutions

In this section, we study the solutions to the RICE game under cooperative settings. First of all, we revisit

the classical RICE solution concept defined by a system-level social welfare maximization, and present

numerical solutions under the current calibration of climate damage function and the updated geophysical

and economic parameters and conditions. Next, we move to Pareto solutions to the proposed RICE game,

and present the Pareto frontier of the RICE game between developing and developed regions. Finally, we

introduce a receding horizon solution to the classical RICE solution as the counter-part for MPC-DICE

developed in [18,19].

4.1 RICE Social Welfare Maximization

The RICE-2011 model focused on the sum of the weighed regional social welfare across all regions:

Wc =
n∑
i=1

ciJi, (26)

where 0 < ci < 1 is know as the Negishi weight for region i with
∑n

i=1 = 1. The values of the ci were calibrated

in the work of [29] to be the inverse of the marginal utilities of consumption when maximizing (26) subject

to RICE dynamics (13)-(21) under the assumption that there is no abatement of CO2 emissions [32,33,43].

4.1.1 Solution Concept

One benchmark cooperative solution to the RICE game is for a centralized climate policy planner to compute

the U1, . . . ,Un for all regions that achieve the maximal value of Wc, for a given initial condition x0.

Definition 4 A decision profile Uw is a global social welfare equilibrium if it is a solution to the following

optimization problem

max
U1,··· ,Un

Wc(X,U)

subject to x(t+ 1) = f(t,x(t),u(t)), x(0) = x0, t ∈ T

u(t) ∈ [0, 1]24, t ∈ T.

(27)

4.1.2 Results

We run a total of 120 5−year periods, and therefore we set T = 120. We obtain the global social welfare

equilibrium Uw for the RICE game under Definition 4 by solving the corresponding OCP (27).

First, each region’s optimal control decisions in emission-reduction rate and saving rate under Uw are

plotted in Fig 3. Clearly, regions including China, Africa, India, Eurasia, OthAsia, and Russia have relatively

high emission-reduction rates who should reach carbon neutral status (i.e., the emission-reduction rate µi(t)

12
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(b) Optimal saving rate.

Figure 3: Each region’s optimal emission-reduction rate and saving rate under Uw.

becoming exactly 1) relatively sooner. The reason for that could be twofolds. First, regions such as Africa

and India bear the greatest damage loss caused by rising atmospheric temperature as presented in Table 1.

Second, it takes regions such as China, Eurasia and Russia comparatively lower cost to reduce carbon

emissions (see the estimated price for backstop technology replacing all carbon fuels in the year 2020 in

Table 2).

Then, in Fig. 4, we examine the trajectory of the atmospheric temperature deviation when the emission-

reduction rates and saving rates under Uw are taken. The work of [29] also solved the OCP (27) with the

same horizon length (600 years) starting from the year of 2005. Although we are inaccessible to the exact

and complete data of results in [29, Fig. 3], the atmospheric temperature deviation trajectory in Fig. 4

appears to be similar to that in [29]. To be specific, the atmospheric temperature deviation in [29, Fig. 3] is

around 2.8◦C, whereas ours is approximately 3◦C.

Finally, in Fig. 5, the social cost of CO2 in each region under the global social welfare equilibrium is

presented. It shows that the social cost of CO2 under Uw in India, Africa and OthAsia is significantly higher

than those in other regions. The reason for that could be that both prices for backstop technology and
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US EU Japan Russia Eurasia China

Price 1051 1635 1635 701 701 817

India MidEast Africa LatAm OHI OthAsia

Price 1284 1167 1284 1518 1284 1401

Table 2: The estimated price for backstop technology in each region that can replace all carbon fuels in the

year 2020.

optimal emission-reduction rates for these regions are higher than those for other regions.

2020 2120 2220 2320 2420 2520 2620

Years

1

1.5

2

2.5

3

3.5

Figure 4: The atmospheric temperature deviation trajectory under Uw.

4.2 RICE Pareto Frontier

Noting the global social welfare equilibrium is a solution concept where the Negishi weights ci, i = 1, . . . , n

are calibrated in a centralized manner. Since the weight ci may greatly impact the optimal emission rates

and saving rates for region i and then its own social cost of carbon, the regions have intrinsic incentives in

negotiating on the distribution of the ci’s. In recent years’ international climate policy forums, the divide

between developed and developing regions has been one of the main barriers from a global consensus on

carbon emission rates [11, 16, 38]. In this subsection, we focus on the social welfare Pareto frontier between

developed and developing regions involved in the RICE game.

4.2.1 Solution Concept: Pareto Frontier

We classify the regions in the RICE-2011 model into two clusters of regions: developed regions (US, EU,

Japan and other high income countries) and developing regions (Russia, Non-Russian Eurasia, China, India,

Middle East, Africa, Latin America and other Asian countries). We denote Vdeveloped = {1, 2, 3, 11} and

Vdeveloping = {4, 5, 6, 7, 8, 9, 10, 12}. Correspondingly, the social welfare of the two clusters of regions is

defined as, respectively,

Wdeveloped =
∑

i∈Vdeveloped

Ji, Wdeveloping =
∑

i∈Vdeveloping

Ji.

For the considered RICE game over these two clusters of regions, we consider the Pareto optimality.
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Figure 5: The social cost of CO2 in each region under Uw.

Definition 5 For the RICE game under developed and developing clusters of regions, a decision profile Up

is a Pareto social welfare equilibrium between the developed and developing clusters if there does not exist

another decision profile U such that

(i) there hold

Wdeveloped(Xp,Up
i ,U

p
−i) ≤Wdeveloped(X,Ui,U−i),

Wdeveloping(Xp,Up
i ,U

p
−i) ≤Wdeveloping(X,Ui,U−i);

(ii) either one of the above two inequalities holds strictly.

Here X and Xp are the states evolved under U and Up, respectively.

Based on Lemma 1, we can calculate such Pareto social welfare frontier between the developed and

developing clusters by solving the family of optimization problems for a given initial condition x0:

max
U1,··· ,Un

p ·Wdeveloped + (1− p) ·Wdeveloping

subject to x(t+ 1) = f(t,x(t),u(t)), x(0) = x0, t ∈ T

u(t) ∈ [0, 1]24, t ∈ T

(28)

where p is selected in the interval [0, 1]. For any fixed p ∈ [0, 1], we obtain a Pareto social welfare equilibrium,

and their collection forms the Pareto frontier between the developed and developing clusters. The Pareto

formulation might have the potential to serve as a benchmark for the interchange of positions between

developed regions and developing regions on climate policies. The parameter p serves as a quantitative

characterization to the allocation of responsibility for climate change mitigation between developed regions

and developing regions: If p is close to 0, developed regions will take higher responsibility, as the developed

regions will if p is close to 1.

4.2.2 Results

We set a total of 120 5-year periods. We take 999 linearly spaced values between 0.001 and 0.999 as the values

of p. For each p, we obtain the Pareto solution Up by solving the respective OCP (28). We plot the social
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Figure 6: Social welfare Pareto frontier between developed regions and developing regions (×104 trillion

USD).

welfare Pareto frontier between developed and developing regions in Fig. 6. We also plot the atmospheric

temperature deviation at the final time step, TAT(120), versus the parameter p in Fig. 7.
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Figure 7: The atmospheric temperature deviation in the year 2620, TAT(120), versus the parameter p.

These results reveal a few notable effects.

• From Fig. 6, it can be seen that the values of p can not drastically change the social welfare received

for both the developing and developed clusters of regions. The maximal (p = 0.999) and minimal (p =

0.001) values for Wdeveloped differs only by 0.35%; the maximal (p = 0.001) and minimal (p = 0.999)

values for Wdeveloping differs only by 0.56%.

• Fig 7 shows that the atmospheric temperature deviation at the final time step is quite robust with

respect to p under the Pareto equilibrium. In fact, for all values of p between 0.001 and 0.999, TAT(120),
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the atmospheric temperature deviation in the year of 2620, always falls between 2.8◦C and 3.3◦C. It

is also clear that a higher or a lower p will both result in a lower atmospheric temperature deviation

in the final year, while p = 0.862 leads to highest terminal atmospheric temperature deviation, i.e.,

global warming in the worst case.

4.3 Receding Horizon RICE

The (27) is an OCP for a nonlinear dynamical system with non-convex cost function. When the horizon

length gets larger, it becomes more difficult to solve the problem numerically. The work of [25] established a

novel receding horizon solution to DICE, which provides robustness and computational efficiency compared

to solving DICE in a long time horizon directly. In what follows, we extend the idea of [25] to RICE.

4.3.1 Solution Concept: MPC-RICE

For the receding horizon approach, we denote the prediction horizon by Trh and the simulation horizon by

Tsim. We introduce

l(t,x(t),u(t)) :=
n∑
i=1

ci ·
gi(Ci(t), Li(t))

(1 + ρi)5t
,

and assume a full measurement or estimate of the state x(t) is available at each time step t ∈ Tsim :=

{0, 1, . . . , Tsim}. The receding horizon process to approximate the global social welfare equilibrium Uw is

proposed in Algorithm 1. A decision profile Urhw = [urhw(0)>, . . . ,urhw(Tsim)>]> as output of Algorithm 1

is said to be a receding horizon global social welfare equilibrium.

Algorithm 1 MPC-RICE

Input: simulation horizon Tsim; prediction horizon Trh.

1: t← 0

2: while t ≤ Tsim do

3: observe x(t)

4: compute the optimal solution u∗(s), s ∈ S := {t, t+ 1, . . . , t+ Trh}, to the following optimization

problem over the receding horizon S

max
u(s),∀s∈S

t+Trh∑
s=t

l(s,x(s),u(s))

subject to x(s+ 1) = f(s,x(s),u(s)), s ∈ S,

u(s) ∈ [0, 1]24, s ∈ S.

(29)

5: apply urhw(t) := u∗(t) to RICE game

6: end while

7: return Urhw

4.3.2 Results

We set the simulation horizon to be Tsim = 120 (600 years), and implement MPC-RICE under prediction

horizons Trh ∈ {10, 20, 60}. We also reproduce MPC-DICE with a simulation horizon of 600 years under

prediction horizons Trh ∈ {10, 20, 60}.
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In Fig. 8, we plot trajectories of the optimal emission-reduction rates under global social welfare equilib-

rium Uw and the optimal control decision Urhw obtained by MPC-RICE with Trh ∈ {10, 20, 60}. When the

prediction horizon gets larger, the optimal emission-reduction rates under Uw converge towards those under

Uw for most time steps. Moreover, the optimal emission-reduction rates under Urhw are more steady in the

sense that they do not drop back to lower levels towards the end of the simulation horizon, which is the case

under Uw. Compared with [18], MPC-RICE and MPC-DICE present similar approximation feature under

large prediction horizons.

In Fig. 9, we plot trajectories of atmospheric temperature deviation for the entire simulation horizon

under the optimal solutions from DICE OCP, MPC-DICE with Trh = 60, Uw, and Urhw with Trh = 60.

The trajectories of atmospheric temperature deviation under DICE OCP and MPC-DICE with Trh = 60

are higher than under Uw and Urhw with Trh = 60 in most time steps except at the beginning. To this

extent, the RICE model and MPC-RICE raise more concerns about global warming.
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Figure 8: The comparison of each region’s optimal emission-reduction rates under Uw and Urhw with different

prediction horizons Trh ∈ {10, 20, 60}.

5 RICE Game: Best-response Dynamics and Open-Loop NE

In this section, we study the best-response dynamics and open-loop Nash equilibrium of the RICE game.
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Figure 9: The comparison of atmospheric temperature deviation for the entire simulation horizon under the

optimal solutions from DICE OCP, MPC-DICE with Trh = 60, Uw, and Urhw with Trh = 60.

5.1 Best-response Recursions for Dynamic Games

In game theory, best-response dynamics is a classical model that describes how players strategically behave

in repeated plays [39]. In standard best-response episodes, each player takes a best-response action for the

next round that maximizes its payoff function given other players’ actions in the present round of play. For

certain types of games such as two-player zero-sum games and potential games, the player actions under

best-response dynamics may converge to a Nash equilibrium [13,21].

In this subsection, we establish the best-response recursions for the dynamic game introduced in Sec-

tion 2.3 with n players over a finite horizon T . We assume the dynamic game is repeatedly and recursively

played for N episodes, where each episode consists of T time steps. We thereby define the aggregated control

decisions of all players in episode k = 1, · · · , N by U(k), and the decisions of player i in episode k by U
(k)
i .

Similarly, the decisions of players excluding player i in episode k is denoted by U
(k)
−i . In view of the best-

response for static games [39], the best-response recursion of the agents in the dynamic game over the N

episodes are described in the following Recursive Best-response Algorithm for Dynamic Games (RBA-DG)

as in Algorithm 2. The RBA-DG produces an output UNE
∗ = U(N) after N episodes of updates.

The implementation of RBA-DG requires two conditions. First, the initial value of the system x(0) = x0

needs to be known by all players at the beginning of the process. Second, at the end of each episode

k = 1, · · · , N , every player should be able to observe or know all other players’ decision sequences over

the episode U
(k)
−i . Then the update of the player decisions for the next episode follows directly from the

best-response dynamics. We present the following result, which holds true immediately from definition of

open-loop Nash equilibrium.

Proposition 1 Consider the repeatedly played n-player dynamic game. Let N =∞ in the RBA-DG. Sup-

pose there exists U∗ such that there holds limk→∞U(k) = U∗. Then U∗ is an open-loop Nash equilibrium

for the dynamic game.

5.2 Recursive Best-response for RICE

The RICE model describes the interplay of the various regions in the world in terms of their climate-change

mitigation policy over a few centuries (for example, RICE-2011 assumes a total time horizon of 600 years
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Algorithm 2 Recursive Best-response Algorithm for Dynamic Games (RBA-DG)

Input: Episodes N ; ci, i ∈ V .

1: compute an optimal cooperative solution Uc by the following problem

max
U1,··· ,Un

∑
i∈V

ci · Ji(X,Ui,U−i)

subject to x(t+ 1) = f(t,x(t),u(t)), x(0) = x0, t ∈ T

u(t) ∈ [0, 1]24, t ∈ T.

2: let U
(0)
i = Uc

i ,∀i ∈ V

3: k ← 0

4: while k < N do

5: for each player i ∈ V do

6: observe U
(k)
−i

7: compute U
(k+1)
i by solving the problem

max
Ui

Ji(X,Ui,U−i), (30a)

s.t. x(t+ 1) = f(t,x(t),u(t)), (30b)

U−i = U
(k)
−i , (30c)

x(0) = x0. (30d)

8: end for

9: U(k+1) = [U
(k+1)
1 ; · · · ; U

(k+1)
n ]

10: k ← k + 1

11: end while

12: return UNE
∗ = U(N)

[29, Supplementary Material]). As a result, despite the fact that the RBA-DG may be conceptually applied to

RICE since RICE has been identified as a dynamic game, it is important to clarify the real-world implication

of recursive best response for RICE.

5.2.1 Solution Concept: Regional Climate Policy Negotiations

We propose to adopt RBA-DG over RICE as a mechanism for regional climate policy negotiations. The

overall negotiations take a prescribed N episodes. In each round of the negotiations, regions accept RICE as

the standing model for climate-economy integration, and decide their emission reduction rates and saving

rates for a fixed time horizon (e.g., 200 years). At the end of each round, all regions reveal their current

planning of the emission reduction rates and saving rates for the entire time horizon to other regions. Then,

during the next round of negotiations, regions get to revise their planned decisions and adopt RBA-DG as

their principle of updating such planned decisions. After the N episodes of negotiations, if all regions realize

none of them can unilaterally change their climate actions and gain significant increase in social welfare,

such a mechanism will produce an approximate open-loop Nash equilibrium for the RICE game in view of

Proposition 1. Such a Nash equilibrium holds higher promise of being accepted by all regions since no region
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is able to benefit from a revised decision when all other regions take the actions from the equilibrium.

5.2.2 Results

Now we implement the RBA-DG over the RICE game. We set the number of episodes to be N = 21.

Convergence. In Fig. 10, we plot the trajectory of ‖U(k+1)−U(k)‖ versus episode k. The result shows that

when applying RBA-DG over the RICE game, the obtained sequence of U(k) converges to a steady point,

and after 5 episodes, the ‖U(k+1) −U(k)‖ has become very close to zero. From Proposition 1, this implies

that the RBA-DG may also serve as an efficient algorithm for computing the open-loop Nash equilibrium

of the RICE game.

Cooperation vs Competition. In Fig. 11, we plot the comparison of each region’s optimal emission-

reduction rates under global social welfare equilibrium Uw (cooperative solution) and the optimal control

decision UNE
∗ (competitive solution) obtained by RBA-DG (Algorithm 2). From Fig. 11, it is not surprising

that each region’s optimal emission-reduction rates under UNE
∗ are significantly lower than those under Uw.

This is a direct reflection that under Nash equilibrium of the RICE game, the regions are working towards

maximizing their own social welfare instead of a collective social welfare of all regions. As a result, each

region has incentives to reduce its emission-reduction rate and its emission abatement cost, and thus improve

its social welfare. These results partially show the rationale behind regions leaving signed climate treaties,

e.g., Canada opt-out from Kyoto Protocol [34] in 2012, and the United States formally quit Paris Agreement

[37] in 2020 because a less aggressive regional policy leads to higher economic benefit even facing climate

change damages.

In Fig. 12, we plot the comparison of the atmospheric temperature deviation trajectories under Uw and

U
(NE)
∗ . From the results, with competition, substantially higher atmospheric temperature deviation occurs

under U
(NE)
∗ , as a consequence of lower emission-reduction rates. For example, in 2620, the atmospheric

temperature deviation resulted from RBA-DG is around 6◦C while the atmospheric temperature deviation

under global social welfare equilibrium is about 3◦C.
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Figure 10: Convergence of ‖U(k+1) −U(k)‖ versus episodes for RBA-DG.

.

21



2020 2320 2620
0

0.25

0.5

0.75

1
US

2020 2320 2620
0

0.25

0.5

0.75

1
EU

2020 2320 2620
0

0.25

0.5

0.75

1
Japan

2020 2320 2620
0

0.25

0.5

0.75

1
Russia

2020 2320 2620
0

0.25

0.5

0.75

1
Eurasia

2020 2320 2620
0

0.25

0.5

0.75

1
China

2020 2320 2620
0

0.25

0.5

0.75

1
India

2020 2320 2620
0

0.25

0.5

0.75

1
MidEast

2020 2320 2620
0

0.25

0.5

0.75

1
Africa

2020 2320 2620
0

0.25

0.5

0.75

1
LatAm

2020 2320 2620
0

0.25

0.5

0.75

1
OHI

2020 2320 2620
0

0.25

0.5

0.75

1
OthAsia

Years

E
m

is
s
io

n
-r

e
d

u
c
ti

o
n

 R
a
te

Figure 11: The comparison of each region’s optimal emission-reduction rates under Uw and UNE
∗ .

6 RICE Game: Receding Horizon Feedback Decisions

In this section, we present a framework for dynamic games where in a single play over the time horizon,

players observe the underlying dynamic process and other players’ actions, and then apply a receding-horizon

feedback decision making for a prediction horizon. Then we apply this receding horizon feedback process

to RICE game in order to capture the competitive nature of regional climate policies, and show how such

competitions have impact on the global climate dynamics.

6.1 Receding Horizon Feedback Decisions for Dynamic Games

Consider the dynamic game introduced in Section 2.3 with n players over a finite horizon T . The game is

played only once, and the players take the following feedback decision process in the receding horizon sense.

The Receding Horizon Feedback Decision Process. The players apply a receding horizon approach

and compute their feedback decisions ui(t). At each time t = 0, . . . , T−1, each player i observes other players’

played action u−i(t) and the system state x(t). Then, every player i assumes that u−i(t) will continue to be

played over [t + 1, t + Trh], and therefore decides its best feedback decision plan uRHP
i|t+1→t+Trh(x(t),u−i(t)),

where uRHP
i|t+1→t+Trh maximizes the cumulative payoff of player i over the time horizon [t+1, t+Trh] conditioned

on that u−i(t) be played over [t+ 1, t+ Trh]. Finally, each player i plays the first planned decision uRHP
i|t+1 in

uRHP
i|t+1→t+Trh for the step t+ 1, and the process moves forward recursively. Denoting uRHF

i (t) as the actions
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Figure 12: The comparison of the atmospheric temperature deviation trajectories under Uw and UNE
∗ .

generated by the receding horizon feedback decision process, clearly there is an underlying feedback law πi

such that

uRHF
i (t) = πi(t,x(t),uRHF

−i (t)).

Note that the decisions uRHF
i (t) are actually played by the players at each time t. The resulting collective

player decisions over the entire time horizon is written as URHF. The computational process of this receding

horizon feedback decision framework is presented in the following Receding Horizon Feedback Algorithm for

Dynamic Games (RHFA-DG).

6.2 Receding Horizon Feedback for RICE

In the current climate-change mitigation measures, there has been no international consensus on the emission

reduction rates and the saving rates for different regions or for the globe collectively, despite the successful

adoption of global or regional climate-change agreements such as the Paris Agreement. In fact, most climate

treaties are neither substantial nor mandatory [9]. The objective of such treaties has not been the actual

emission-reduction rate, but rather to establish environmental norms at the international level. The hope

is that such international environmental norms may then be translated into the domestic climate policies

according to each region’s political processes [10].

In the real world, regions revise their climate-change policies from time to time and attempt to compete

with each other while acknowledging the importance of climate-change mitigation. Indeed, such revisions of

regional climate-change policies may depend on many factors such as the public opinion shifts, government

changes, and new international environmental norms. In the end, the nature of regional competitions persists

as aggressive climate-change mitigation policy for a region may benefit other regions economically in the

short run, although collectively aggressive climate-change mitigation policy benefits every region as shown

from the comparison between cooperative social welfare equilibrium and the approximate open-loop Nash

equilibrium. Here, we propose to apply RHFA-DG on RICE as an attempt to model the real-world regional

climate-policy evolution given the economically competitive nature of such policies.
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Algorithm 3 Receding Horizon Feedback Algorithm for Dynamic Games (RHFA-DG)

Input: simulation horizon Tsim; prediction horizon Trh; ci, i ∈ V.

1: compute an optimal cooperative solution Uc by the following problem

max
U1,··· ,Un

∑
i∈V

ci · Ji(X,Ui,U−i)

subject to x(t+ 1) = f(t,x(t),u(t)), x(0) = x0, t ∈ T

u(t) ∈ [0, 1]24, t ∈ T.

2: let URHF
i (0) = Uc

i (0), ∀i ∈ V

3: t← 0

4: while t ≤ Tsim do

5: for each player i ∈ V do

6: Take action URHF
i (t)

7: end for

8: for each player i ∈ V do

9: observe x(t) and URHF(t)

10: compute x(t+ 1) according to (1)

11: assume all players j ∈ V/{i} will continue to play URHF
−i (t) over [t+ 1, t+ Trh]

12: compute its optimal solution uRHP
i|t+1→t+Trh to the following receding horizon optimization problem

max
ui|t+1→t+Trh

t+Trh∑
s=t+1

gi(s,x(s),ui(s),u−i(s)) (31a)

s.t. x(s+ 1) = f(s,x(s),u(s)), (31b)

u−i(s) = URHF
−i (t), s ∈ [t+ 1, t+ Trh]. (31c)

13: plan URHF
i (t+ 1) = uRHP

i|t+1

14: end for

15: end while

6.3 Results

We implement the RHFA-DG over the RICE game. We set the simulation horizon and prediction horizon

to be Tsim = 120 and Trh = {5, 10, 20}.
In Fig. 13, we plot the comparison of each region’s optimal emission-reduction rates under global social

welfare equilibrium Uw, the approximated open-loop Nash equilibrium UNE
∗ solved from RBA-DG (Al-

gorithm 2), and the receding horizon feedback decisions URHF solved from RHFA-DG (Algorithm 3) with

Trh = {5, 10, 20}. First, with competition, the receding horizon feedback decisions of emission-reduction rates

solved from RHFA-DG are significantly lower than those under global social welfare equilibrium. Second,

due to receding horizon and myopic assumption of other regions’ future decisions, the emission-reduction

rates from RHFA-DG are lower than those obtained from RBA-DG in the early time steps. However, inter-

estingly, the former continues to climb in the final time steps, while the latter drops back to lower levels in

the end of simulation horizons.
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In Fig. 14, we plot the comparison of the atmospheric temperature deviation trajectories under Uw,

UNE
∗ , and URHF with Trh = {5, 10, 20}. There are several observations on the results. First, the atmospheric

temperature deviation under URHF is substantially higher than that under Uw, and slightly higher than

that under UNE
∗ . Second, for URHF with Trh = {5, 10, 20}, the smaller the prediction horizon is, the higher

the atmospheric temperature deviation is. This implies that longer prediction horizon forces the regions to

take the long-term climate damages more into their receding horizon decisions, and therefore leads to better

climate-change mitigation.
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Figure 13: The comparison of each region’s optimal emission-reduction rates under Uw, UNE
∗ , and URHF

with Trh = {5, 10, 20}.

7 Conclusions

In this paper, we investigated how cooperation and competition arise in regional climate policies under the

RICE framework from the perspective of game theory and optimal control. The results revealed how game

theory may be used to facilitate international negotiations towards consensus on regional climate-change

mitigation policies, as well as how cooperative and competitive regional relations shape climate change for

our future.
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Figure 14: The comparison of the atmospheric temperature deviation trajectories under Uw, UNE
∗ , and

URHF with Trh = {5, 10, 20}.
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