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Abstract: One of the most widely used models for studying the geographical economics of
climate change is the Regional Integrated model of Climate and the Economy (RICE). In
this paper, we investigate how cooperation and non-cooperation arise in climate policy across
regions under the RICE framework from the standpoints of game theory and optimal control.
We show that the RICE model is inherently a dynamic game. We study both cooperative and
non-cooperative solutions to this RICE dynamic game. Our results show how game theory
may be used to help international negotiations reach an agreement on regional climate-change
mitigation strategies, as well as how cooperative and competitive regional relationships impact
future climate change.
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1. INTRODUCTION

The issue of global warming has emerged as a central
international environmental question over decades. As
a consequence of economic development, human-caused
emissions of greenhouse gases (GHG), especially carbon
dioxide (CO2), contribute to a significant increase in global
temperature by 1.15◦C relative to the pre-industrial age
(Pörtner et al., 2022). This temperature deviation yields
significant changes in the global climate, including larger
wildfires, sea level rise and melting of ice lands. To assess
the damages of anthropogenic GHG, especially CO2, sci-
entists employ the Integrated Assessment Models (IAMs)
(Hope, 2013; Nordhaus and Sztorc, 2013). IAMs simulate
the dynamics of economy-climate interactions by incor-
porating mathematical models from both economics and
geophysical science. The Dynamic Integrated model of
Climate and Economy (DICE) is one of the most well-
known IAMs (Nordhaus and Sztorc, 2013). The DICE
model is a globally aggregated model and treats global
warming as a single-agent problem. Considering the cru-
cial aspect of regional socio-economic heterogeneity, the
Regional Integrated model of Climate and the Economy
(RICE) was proposed, which is a decentralized version of
the DICE model (Nordhaus, 2010). By dividing the world
into several regions, the RICE model takes the vantage
point in determining how multiple regions may jointly
design climate policies and cope with global warming issue.

In the RICE model, there are two coupled but conflicting
sides in regional emission-reduction policies: regions are
affected by the same global climate system; they also
decide their climate strategies to benefit their individ-
ual economic benefits and political self-interests. There-
fore, it is actually a decision-making process where non-
cooperation occurs. Game theory has been a fundamental
tool in explaining decision-making of self-interested players
in a competitive setting (Owen, 2013). In a game, each

player takes its action to maximize its payoff function.
The payoff function of each player relies on not only its
own action, but also other players’ actions, resulting in
inherent non-cooperation. In the RICE model, regional
climate strategies are associated with a common global
climate dynamic, and as a result, climate policy decisions
fall into the concept of dynamic games (Başar and Olsder,
1998). In a dynamic game, the strategic interaction among
players recurs over time. The group of players is associated
with a dynamical game state that depends on all players’
actions. The goal is for each player to take an action to
maximize each player’s cumulative payoff function over
time that depends on the game state, its own action, and
other players’ actions.

In this paper, we investigate how cooperation and non-
cooperation in regional climate policies under the RICE
framework affect the formation of international climate
treaties, the implementation of regional climate-change
mitigation measures, and the resulting implications of
competitive decisions for climate change from the per-
spective of game theory and optimal control. In control
community, there are a few efforts on studying the climate-
change mitigation measures. The work of (Kellett et al.,
2019) provided a tutorial introduction to the DICE model
and proposed a receding horizon approach to DICE. A bi-
objective optimal control problem (OCP) on DICE was
studied, objectives of which are maximizing social welfare
and minimizing atmospheric temperature deviation (Heris
and Rahnamayan, 2020). The work of (Carlino et al., 2020)
studied a multi-objective stochastic OCP on DICE, which
accounts for stochastic disturbances and aligns with phys-
ical targets posed by international agreements on climate
change mitigation.

The contributions of this work are summarized as follows.
We show that the RICE model is inherently a dynamic



game, termed the RICE game. Both cooperative and non-
cooperative solutions to the RICE game are considered:

• For cooperative solutions, we study global social wel-
fare maximization problem.Next, we classify regions
into two clusters of developed regions and developing
regions, and examine the social welfare Pareto frontier
under the concept of Pareto optimality.
• For non-cooperative solutions, we study best-response

dynamics and open-loop Nash equilibrium of the
RICE game. A Recursive Best-response Algorithm for
Dynamic Games (RBA-DG) is proposed. By applying
it to the RICE game, the simulation result shows
that the obtained sequence of actions converges to
a steady point, indicating that RBA-DG is useful
for computing the open-loop Nash equilibrium of the
RICE game.

Our implementations of various solution concepts for
RICE under the proposed dynamic-game perspective are
developed relying on previous efforts (Faulwasser et al.,
2018; Kellett et al., 2016; Anthoff and Errickson, 2021). We
have open-sourced our implementation as a RICE-GAME
framework, with a Matlab and Casadi-based implementa-
tion of RICE dynamic game, Preprint at arXiv.org, code
for download at (Chen and Shi, 2022).

The paper is organized as follows. Section 2 provides pre-
liminaries of the DICE/RICE model and dynamic games.
Section 3 shows the RICE model as a dynamic game.
Section 4 considers cooperative solutions for RICE game.
Best-response dynamics and open-loop Nash equilibrium
for RICE game are studied in Section 5. The paper ends
with concluding remarks in Section 6.

2. PRELIMINARIES

In this section, we introduce some preliminary knowledge
on the DICE/RICE model and dynamic games.

2.1 The DICE Model

The DICE model (Nordhaus and Sztorc, 2013) simulates
the interplay between economy and climate. The DICE
model is composed of two sectors: a geophysical sector
that accounts for global interaction between carbon and
temperature, and an economic sector that is globally
aggregated for the world total.

Geophysical and Economic Sectors. In the geophys-
ical sector, the DICE model considers CO2 emissions as
the major contributor to climate change. The geophysical
sector is constructed as follows.

• There are two main sources of CO2 emissions: indus-
trial CO2 emissions related to the carbon intensity
(denoted by σ) of global economic activities and nat-
ural CO2 emissions due to land use changes, Eland.
Global CO2 emissions as the sum of industrial and
natural emissions drive the carbon cycle of the Earth.
• The carbon dynamics are described by a three-

reservoir model (Post et al., 1990) on the carbon
flows among three reservoirs: the atmosphere, the
upper oceans and biosphere, and the deep oceans.
The average carbon masses in those reservoirs are
represented by MAT, MUP, and MLO, respectively.

• Accumulations of CO2 emissions and other GHG
warm the Earth’s surface through enhanced radiative
forcing. Radiative forcing resulted by CO2 emissions
has a dependence on the atmospheric carbon mass;
GHG other than CO2 emissions contribute to exoge-
nous radiative forcing FEX.

• The rise in atmospheric temperature is driven by ra-
diative forcing. Temperature dynamics are captured
by a two-layer model (Schneider and Thompson,
1981). Given the temperature in year 1750 as zero
reference, TAT and TLO represent the temperature
deviation in the atmosphere and in the lower ocean
from those of the reference year, respectively.

The economic sector of DICE is based on the Cobb-
Douglas production function (Cobb and Douglas, 1928),
where gross economic output is determined by total factor
productivity A, labor L, and capital K. Total factor pro-
ductivity and labor evolve exogenously; capital dynamics
follows the Solow-Swan model (Swan, 1956) where capital
depreciates over time and is replenished by investment.

Control Inputs. The DICE model assumes two control
decisions: the saving rate s and the emission-reduction rate
µ. The saving rate s represents the ratio of investment to
economic output; the emission-reduction rate µ represents
the rate at which industrial CO2 emissions are reduced.

2.2 The RICE Model

The RICE model is a variant of the DICE model that ac-
counts for regional climate damages and control decisions
(Nordhaus, 2011). The RICE-2011 model uses a time-step
of 10 years, starting from the year 2005 as the initial year.

The RICE-2011 model integrates a global geophysical
sector with regional economic sectors:

• The global geophysical sector of the RICE-2011 model
contains the same carbon dynamics and temperature
dynamics as the DICE model;

• The regional economic sectors of the RICE-2011
model disaggregates the world into 12 regions, each of
which is equipped with region-specific climate damage
level, economic factors, and saving rate and emission-
reduction rate as local control inputs.

2.3 Dynamic Games

An n-player discrete-time dynamic game over a finite
horizon is defined as follows.

Dynamic Game. The n players are indexed in V :=
{1, 2, . . . , n}; time is discrete with the steps indexed in
T := {0, 1, . . . , T}. Each player can manipulate the game
through its control decisions, and the control decision
space of player i ∈ V is denoted by Ui ⊆ Rd. At
each time step t = 0, . . . , T , the decision executed by
player i is denoted by ui(t) ∈ Ui. We also use u(t) =
[u>1 (t); . . . ;u>n (t)], Ui = [u>i (0); . . . ;u>i (T )] and U =
[U1; . . . ;Un] to represent the all-player decision profile at
time t, the player-i decision throughout the time horizon,
and the decision profile for all players and for all time steps.
The control decisions of all players excluding player i at
time step t is denoted by u−i(t), and the control decisions



of all players excluding player i over the entire horizon is
represented by U−i.

For each t ∈ T , the group of players are associated
with a dynamical state x(t) ⊆ Rm that evolves accord-
ing to x(t + 1) = f(t,x(t),u(t)),x(0) = x0, t ∈ T ,
with x0 being initial state. At each time t ∈ T , upon
ui(t), agent i receives payoffs gi(x(t),ui(t),u−i(t)) ∈ R
given other players’ actions u−i(t) and current state x(t),
where gi(x(t),ui(t),u−i(t)) is a continuous function with
respect to x(t), ui(t), and u−i(t). The cumulative pay-
off of agent i throughout the time horizon is therefore

Ji(X,Ui,U−i) =
∑T
t=0 gi(x(t),ui(t),u−i(t)) where X =

(x>(0), . . . ,x>(T ))>. Each player’s goal is to make deci-
sions for maximizing its cumulative payoffs; the system
dynamics produces a terminal state x(T + 1) towards the
end of the time horizon as a result of those decisions.

Open-loop Nash equilibrium. In the open loop in-
formation structure, each player knows the initial state
x0, and then plans at t = 0 all the control decisions
ui(t) for t ∈ T . Consequently, the open loop control
decision of ui(t) can be written as ui(t) = ui(t,x0).
Denote an open loop decision profile by U∗ where U∗i :=
[u∗i (0,x0); . . . ;u∗i (T,x0)], i ∈ V. We introduce the follow-
ing definition. Here with slight abuse of notation we also
write Ji(X,Ui,U−i) as Ji(x0,Ui,U−i) noting the fact
that X is uniquely determined by x0 and (Ui,U−i).

Definition 1. (Open Loop NE). Given the initial state x0,
a control decision profile U∗ is said to be an open
loop Nash equilibrium control decision profile if there
holds for all i ∈ V and all Ui that Ji(x0,U

∗
i ,U

∗
−i) ≥

Ji(x0,Ui,U
∗
−i).

3. RICE AS A DYNAMIC GAME

In this section, we show that the RICE model is inherently
a dynamic game where regional saving rates and emission-
reduction rates regulate global temperature, and then the
global temperature has impact on regional social welfares
through climate damage. Our presentation is based on the
RICE-2011 model with slight modifications, but the nature
of being a dynamic game is embedded in all RICE models.

There are 12 regions in the RICE-2011 model. Each region
is considered a player and the regions are indexed in
V = {1, 2, . . . , n} with n = 12. We operate the RICE
dynamic game in periods of 5 years, starting from the
year 2020 as the initial year. Taking the discrete time
step index T , the relation between an actual calendar year
and the corresponding discrete time step is determined
by year(t) = year(0) + 5t, year(0) = 2020. Note that
although most variables in the RICE-2011 model are de-
fined as flows per year and only some variables are in flows
per decade (Nordhaus, 2011, Supplementary Material), all
variables in this present are defined as flows per year.

3.1 System Dynamics

We define the dynamical state of the RICE model at time
step t ∈ T as x(t) = [TAT(t);TLO(t);MAT(t);MUP(t);
MLO(t);K1(t); . . . ;Kn(t)] ∈ Rn+5. Let region i’s con-
trol decision at time step t be ui(t) = [si(t);µi(t)]

> :=
[ui[1](t);ui[2](t)]

> ∈ [0, 1]2. Consequently, the control de-
cisions of the RICE dynamic game at time step t ∈ T of all

players are u(t) = [s1(t);µ1(t); . . . ; sn(t);µn(t)] ∈ [0, 1]24.
According to the RICE model, the dynamics of x(t) can be
written as x(t+ 1) = f(t,x(t),u(t)), x(0) = x0, t ∈ T ,
where f := [f1; f2; . . . ; fn+5]> follows from the interdepen-
dency among the geophysical signals and the economic
signals, and the feedback between the two sectors. In
what follows, we briefly describe the form of entries in the
dynamics f . For a more detailed description, please refer
to (Nordhaus, 2011).

Carbon dynamics. There are three carbon reservoirs:
the atmosphere, the upper oceans and the biosphere, and
the deep oceans. The atmospheric carbon reservoir has an
additional input, the global CO2 emissions E(t) that is
related to economic activities and land use at time t. The
carbon dynamics for carbon transition among the three
reservoirs are described by

M(t+ 1) = ζM(t) + ξ1E(t) (1)

where M(t) = [MAT(t);MUP(t);MLO(t)] and ζ ∈
R3×3, ξ1 ∈ R3×1 represent diffusion parameters.

Temperature dynamics. The evolution of the atmo-
spheric and ocean temperature is governed by

T(t+ 1) = φT(t) + ξ2F (t) (2)

where T(t) = [TAT(t);TLO(t)] and φ ∈ R2×2, ξ2 ∈ R2×1

represent parameters. The radiative forcing at time step t

is computed as F (t) = η log2( MAT(t)
MAT,1750 ) + FEX(t). Here

η and MAT,1750 are constants, and FEX(t) represents
radiative forcing of other GHG at time step t.

Economic dynamics. The economy of each region
i ∈ V at time step t ∈ T follows from the Cobb-
Douglas production function (Cobb and Douglas, 1928),
Yi(t) = Ai(t)Ki(t)

γi(t)Li(t)
1−γi , where Yi(t), Ai(t),Ki(t)

and Li(t) represent region i’s gross economic output, total
factor productivity, capital stock and labor at time step t,
respectively. Here, γi, i ∈ V, are parameters.

Economy-climate feedback. Global CO2 emissions at
time step t are the sum of natural emissions because of each
region’s land use at time step t, Eland

i (t), and industrial
emissions resulted from each region’s economic activities at
time step t. Each region i’s industrial emissions depend on
each region i’s carbon intensity at time step t, σi(t), which
is an exogenous variable. Consequently, global CO2 emis-

sions at time step t is described by E(t) =
∑n
i=1

(
σi(t)(1−

µi(t))Yi(t) + Eland
i (t)

)
, where µi(t), i ∈ V, t ∈ T , are

control decisions representing the emission-reduction rate.

The emission abatement cost fraction as the percentage of
gross economic output spent on emission-reduction effort

at time step t is given by Λi(t) = 1 − θ
[1]
i (t)µi(t)

θ
[2]
i ,

where θ
[2]
i , and θ

[1]
i (t), i ∈ V, t ∈ T , are parameters.

The parameters θ
[1]
i (t), i ∈ V, t ∈ T , are calculated by

θ
[1]
i (t) = pbi

1000·θ[2]
i

(1 − δpbi )t−1σi(t), where pbi, represents

the price of backstop technology at time step t = 0 for

region i to replace all carbon fuels, and the δpbi , i ∈ V, are
parameters. The damage function Ωi(t) is the percentage
of gross economic output damaged by temperature rising.
As a result, the net economic output Qi(t) (economic
output after the emission-reduction spending and climate



damage), is given by Qi(t) = Ωi(t)Λi(t)Yi(t). The Solow-
Swan model (Swan, 1956) gives a description of capital
accumulation of each region i ∈ V:

Ki(t+ 1) = (1− δKi )5Ki(t) + 5si(t)Qi(t), (3)

where δKi , i ∈ V, are parameters, and si(t), i ∈ V, t ∈ T ,
are control decisions representing the saving rate.

3.2 Damage Functions

A simplified form of damage function is employed, which
only depends on rising atmospheric temperature deviation,

Ωi(t) = 1−a[1]i TAT(t)−a[2]i TAT(t)a
[3]
i , where a

[1]
i , a

[2]
i , and

a
[3]
i , i ∈ V, are parameters calibrated to yield a certain

amount of damage loss.

3.3 Payoff Functions

Note that from the net economic output Qi(t), a total
amount of si(t)Qi(t) has been made as investment. The
remaining part Ci(t) = (1−si(t))Qi(t) can then be used for
consumption. In RICE models, for region i, the social wel-
fare of the population Li(t) consuming Ci(t) of economic
output at time t is defined by the population-weighted
utility of per capita consumption gi(Ci(t), Li(t)) = Li(t) ·
(
Ci(t)

Li(t)
)1−αi−1

1−αi , where αi is a constant. The cumulative social
welfare of region i across the time horizon is then given by

Ji =

T∑
t=0

gi(Ci(t), Li(t))

(1 + ρi)5t
:= Ji(X,Ui,U−i) (4)

where ρi is a constant discounting factor. For each region
i ∈ V, naturally it will attempt to maximize its cumulative
social welfare.

We have now formally represented the RICE-2011 model
as a dynamic game, termed the RICE game. In what
follows when we implement the proposed RICE game,
the values of the initial state x(0) and the parameters
are updated in the following way: the initial state are
calibrated to match the data in year 2020; the parameters
in the geophysical sector use the latest updated values in
the DICE-2016 model, while the parameters in the regional
economic sector remain unchanged.

4. RICE GAME: COOPERATIVE SOLUTIONS

In this section, we study the solutions to the RICE game
under cooperative settings.

4.1 RICE Social Welfare Maximization

The RICE-2011 model focused on the sum of the weighed
regional social welfare across all regions: Wc =

∑n
i=1 ciJi,

where 0 < ci < 1 is know as the Negishi weight for region
i with

∑n
i=1 = 1. The values of the ci were calibrated in

the work of (Nordhaus, 2013).

Solution Concept. One benchmark cooperative solution
to the RICE game is for a centralized climate policy
planner to compute the U1, . . . ,Un for all regions that
achieve the maximal value of Wc, for a given initial
condition x0.
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Fig. 1. Optimal emission-reduction rate under Uw.

Definition 2. A decision profile Uw is a global social
welfare equilibrium if it is a solution to the following
optimization problem

max
U1,··· ,Un

Wc(X,U)

subject to x(t+ 1) = f(t,x(t),u(t)), x(0) = x0,

u(t) ∈ [0, 1]24, t ∈ T .
(5)

Results. We run a time length of 600 years, and therefore
we set T = 120. We obtain the global social welfare
equilibrium Uw for the RICE game under Definition 2 by
solving the corresponding OCP (5).

First, each region’s optimal control decisions in emission-
reduction rate under Uw are plotted in Fig 1. Clearly,
regions including China, Africa, India, Eurasia, OthAsia,
and Russia have relatively high emission-reduction rates
who should reach carbon neutral status relatively sooner.
The reason for that could be twofolds. First, regions
such as Africa and India bear the greatest damage loss
caused by rising atmospheric temperature. Second, it takes
regions such as China, Eurasia and Russia comparatively
lower cost to reduce carbon emissions.

Then, in Fig. 2, we examine the trajectory of the
atmospheric temperature deviation when the emission-
reduction rates and saving rates under Uw are taken. The
work of (Nordhaus, 2011) also solved the OCP (5) with
the same horizon length of 600 years starting from the
year of 2005. Although we are inaccessible to the exact
and complete data of results in (Nordhaus, 2011, Fig.
3), the atmospheric temperature deviation trajectory in
Fig. 2 appears to be similar with that in (Nordhaus, 2011).
To be specific, the atmospheric temperature deviation in
(Nordhaus, 2011, Fig. 3) is around 2.8◦C, whereas ours is
approximately 3◦C.

4.2 RICE Pareto Frontier

In recent years’ international climate policy forums, the
divide between developed and developing regions has been
one of the main barriers from a global consensus on carbon
emission rates (Dimitrov, 2010; Castro, 2021). In this
subsection, we focus on the social welfare Pareto frontier
between developed and developing regions involved in the
RICE game.
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der Uw.

Pareto Frontier. We classify the regions in the RICE-
2011 model into two clusters of regions: developed regions
in Vdeveloped and developing regions in Vdeveloping. Cor-
respondingly, social welfare of two clusters of regions is
defined as Wdeveloped =

∑
i∈Vdeveloped

Ji and Wdeveloping =∑
i∈Vdeveloping

Ji, respectively. For the considered RICE

game over these two clusters of regions, we consider the
Pareto optimality.

Definition 3. For the RICE game under developed and
developing clusters of regions, a decision profile Up is a
Pareto social welfare equilibrium between the developed
and developing clusters if there does not exist another
decision profile U such that

(i) there hold

Wdeveloped(Xp,Up
i ,U

p
−i) ≤Wdeveloped(X,Ui,U−i),

Wdeveloping(Xp,Up
i ,U

p
−i) ≤Wdeveloping(X,Ui,U−i);

(ii) either one of the above two inequalities holds strictly.

Here X and Xp are the states evolved under U and Up,
respectively.

Based on (Engwerda, 2005, Lemma 6.1), we can calculate
such Pareto social welfare frontier between the developed
and developing clusters by solving the family of optimiza-
tion problems for a given initial condition x0:

max
U1,··· ,Un

p ·Wdeveloped + (1− p) ·Wdeveloping

subject to x(t+ 1) = f(t,x(t),u(t)), x(0) = x0,

u(t) ∈ [0, 1]24, t ∈ T ,
(6)

where p is selected in the interval [0, 1]. For any fixed
p ∈ [0, 1], we obtain a Pareto solution, and their collec-
tion forms the Pareto frontier between the developed and
developing clusters. The Pareto formulation might have
the potential to serve as a benchmark for the interchange
of positions between developed regions and developing
regions on climate policies. The parameter p serves as a
quantitative characterization to the allocation of respon-
sibility for climate change mitigation between developed
regions and developing regions: If p is close to 0, developed
regions will take higher responsibility, as the developed
regions will if p is close to 1.

Results. We set a time length of 600 years. We take
999 linearly spaced values between 0.001 and 0.999 as the
values of p. For each p, we obtain the Pareto solution Up by
solving the respective OCP (6). We plot the social welfare
Pareto frontier between developed and developing regions
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Fig. 3. Social welfare Pareto frontier between developed
regions and developing regions.

in Fig. 3. We also plot the atmospheric temperature
deviation at the final time step, TAT(120), versus the
parameter p in Fig. 4.
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Fig. 4. Atmospheric temperature deviation in the year
2620, TAT(120), versus the parameter p.

These results reveal a few notable effects.

• From Fig. 3, it can be seen that the values of p can not
drastically change the social welfare received for both
developing and developed clusters of regions. The
maximal (p = 0.999) and minimal (p = 0.001) values
for Wdeveloped differ only by 0.42%; the maximal (p =
0.001) and minimal (p = 0.999) values for Wdeveloping

differ only by 0.56%.
• Fig 4 shows that the atmospheric temperature de-

viation at the final time step is quite robust with
respect to p under the Pareto equilibrium. In fact, for
all values of p between 0.001 and 0.999, TAT(120),
the atmospheric temperature deviation in the year of
2620, always falls between 2.8◦C and 3.3◦C.

5. RICE GAME: BEST-RESPONSE DYNAMICS AND
OPEN-LOOP NE

In this section, we study the best-response dynamics and
open-loop Nash equilibrium of the RICE game.

5.1 Best-response Recursions for Dynamic Games

We now establish the best-response recursions for the
dynamic game introduced in Section 2.3 with n players
over a finite horizon T . We assume the dynamic game is
repeatedly and recursively played for N episodes, where
each episode consists of T time steps. We thereby define



the aggregated control decisions of all players in episode
k = 1, · · · , N by U(k), and the decisions of player i

in episode k by U
(k)
i . Similarly, the decisions of players

excluding player i in episode k is denoted by U
(k)
−i . In view

of the best-response for static games (Roughgarden, 2010),
the best-response recursion of the agents in the dynamic
game over the N episodes are described in the following
Recursive Best-response Algorithm for Dynamic Games
(RBA-DG) as in Algorithm 1. The RBA-DG produces an
output UNE

∗ = U(N) after N episodes of updates.

Algorithm 1 Recursive Best-response Algorithm for Dy-
namic Games (RBA-DG)

Input: Episodes N ; ci, i ∈ V .

1: compute an optimal cooperative solution Uc from (5)

2: let U
(0)
i = Uc

i ,∀i ∈ V
3: while k < N do
4: for each player i ∈ V do

5: observe U
(k)
−i

6: compute U
(k+1)
i by solving the problem

max
Ui

Ji(X,Ui,U−i), (7a)

s.t. x(t+ 1) = f(t,x(t),u(t)), x(0) = x0, (7b)

U−i = U
(k)
−i . (7c)

7: end for
8: U(k+1) = [U

(k+1)
1 ; · · · ;U

(k+1)
n ]

9: end while
10: return UNE

∗ = U(N)

The implementation of RBA-DG requires two conditions.
First, the initial value of the system x(0) = x0 needs to
be known by all players at the beginning of the process.
Second, at the end of each episode k = 1, · · · , N , every
player should be able to observe or know all other players’

decision sequences over the episode U
(k)
−i . Then the update

of the player decisions for the next episode follows directly
from the best-response dynamics. We present the following
result, which holds true immediately from definition of
open-loop Nash equilibrium.

Proposition 1. Consider a repeatedly played n-player dy-
namic game. Let N = ∞ in the RBA-DG. Suppose there
exists U∗ such that there holds limk→∞U(k) = U∗. Then
U∗ is an open-loop Nash equilibrium for dynamic game.

5.2 Recursive Best-response for RICE

We propose to adopt RBA-DG over RICE as a mechanism
for regional climate policy negotiations. The overall nego-
tiations take a prescribed N episodes. In each round of the
negotiations, regions accept RICE as the standing model
for climate-economy integration, and decide their emission
reduction rates and saving rates for a fixed time horizon.
At the end of each round, all regions reveal their current
planning of the emission reduction rates and saving rates
for the entire time horizon to other regions. Then, during
the next round of negotiations, regions get to revise their
planned decisions and adopt RBA-DG as their principle
of updating such planned decisions. After the N episodes
of negotiations, if all regions realize none of them can uni-
laterally change their climate actions and gain significant

increase in social welfare, such a mechanism will produce
an approximate open-loop Nash equilibrium for the RICE
game in view of Proposition 1. Such a Nash equilibrium
holds higher promise of being accepted by all regions since
no region is able to benefit from a revised decision when
all other regions take the actions from the equilibrium.

Results. Now we implement the RBA-DG over the RICE
game. We set the number of episodes to be N = 21.

Convergence. In Fig. 6, we plot the trajectory of
‖U(k+1) −U(k)‖ versus episode k. The result shows that
when applying RBA-DG over the RICE game, the ob-
tained sequence of U(k) converges to a steady point, and
after 5 episodes, the ‖U(k+1)−U(k)‖ has become very close
to zero. From Proposition 1, this implies that the RBA-
DG may also serve as an efficient algorithm for computing
the open-loop Nash equilibrium of the RICE game.

Cooperation vs Non-cooperation. In Fig. 5, we
plot the comparison of each region’s optimal emission-
reduction rates under Uw and UNE

∗ obtained by RBA-DG.
From Fig. 5, it is not surprising that each region’s optimal
emission-reduction rates under UNE

∗ are significantly lower
than those under Uw. This is a direct reflection that under
Nash equilibrium of the RICE game, the regions are work-
ing towards maximizing their own social welfare instead
of a collective social welfare of all regions. As a result,
each region has incentives to reduce its emission-reduction
rate and its emission abatement cost, and thus improve its
social welfare. These results partially show the rationale
behind regions leaving signed climate treaties, e.g., Canada
opt-out from Kyoto Protocol in 2012 (Nwanguma, 2016),
because a less aggressive regional policy leads to higher
economic benefit even facing climate change damages.

In Fig. 7, we plot the comparison of the atmospheric tem-

perature deviation trajectories under Uw and U
(NE)
∗ . From

the results, with non-cooperation, substantially higher

atmospheric temperature deviation occurs under U
(NE)
∗ ,

as a consequence of lower emission-reduction rates. For
example, in 2620, the atmospheric temperature deviation
resulted from RBA-DG is around 6◦C while the atmo-
spheric temperature deviation under global social welfare
equilibrium is about 3◦C.

6. CONCLUSIONS

In this paper, we investigated how cooperation and non-
cooperation arise in regional climate policies under the
RICE framework from the perspective of game theory and
optimal control. The results reveal how game theory may
be used to facilitate international negotiations towards
consensus on regional climate-change mitigation policies,
as well as how cooperative and competitive regional rela-
tions shape climate change for our future.
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