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Abstract— In this paper, we study entirely self-sustained
multi-agent systems with decentralized resource allocation.
Agents make local resource decisions, and sometimes, trading
decisions to maximize their individual payoffs accruing from
the utility of consumption and the income or expenditure from
trading. A competitive equilibrium is achieved if all agents
maximize their individual payoffs; a social welfare equilibrium
is achieved if the total agent utilities are maximized. First,
we consider multi-agent systems with static local allocation,
and prove from duality theory that under general convexity
assumptions, the competitive equilibrium and the social welfare
equilibrium exist and agree. Next, we define a social shaping
problem for a competitive equilibrium under which the optimal
resource price is socially acceptable, and show that agent utility
functions can be prescribed in a family of socially admissible
quadratic functions, under which the pricing at the competitive
equilibrium is always below a threshold. Finally, we extend
the study to dynamical multi-agent systems where agents are
associated with dynamical states from linear processes, and
prove that the dynamic competitive equilibrium and social
welfare equilibrium continue to exist and coincide with each
other.

I. INTRODUCTION

Next generation technologies are leveraging the internet of
things (IoT) to support critical infrastructure systems includ-
ing energy distribution and automotive transportation, and
are being organized as interconnected multi-agent systems
[1]. Such systems involve data collection, resource allocation,
and control coordination between geographically distributed
subsystems. Each subsystem, termed an ‘agent’, is an in-
telligent functioning unit with its own decision, objective
and preference, and remarkably, network-level goals such
as consensus, formation, and optimality can be achieved by
agents interacting with others over a network [2]–[6].

One important problem for multi-agent system operation is
efficient resource allocation, where demand and supply must
be balanced for efficient and secure operations at the system
level. In light of classical welfare economics theory [7], [8],
careful pricing of the transmission flow potentially balances
the demand against the supply across the entire system.
Agents decide on the resource consumed, and perhaps further
the resource traded, to maximize their payoffs accruing from
the utility of consumption and the income or expenditure
from trading. When network supply and demand is balanced,
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a competitive equilibrium is achieved if all agents maximize
their individual payoffs; a social welfare equilibrium is
achieved if the total agent utilities are maximized [9].

The concept of resource allocation via a competitive
equilibrium has been widely applied in the smart grids and
climate-economy systems. In smart grids, agents represent
households, and by optimally pricing energy, we ensure the
payoffs for all households are maximized subject to the
balance of energy supply and demand [10]–[19]. In climate-
economy frameworks, agents represent countries, and the
optimal price of carbon emissions is calculated under the
competitive equilibrium of the carbon market, becoming a
benchmark for the social cost of carbon [20]–[24]. However,
in both cases, the resilience of the pricing mechanism is
potentially a serious challenge even for theoretically optimal
equilibrium conditions. For example, residential customers in
Texas had to pay electricity bills exceeding previous invoices
by a factor of over one hundred during the power shortage
event in February 2021 [25]. Moreover, the Paris Agreement
was only achieved in 2016 after a decade of negotiations,
as the estimated social cost of carbon was perceived as
unfair among different nations [26]. Due to the common
failure of guaranteeing the smoothness and boundedness of
the resource prices in multi-agent systems, it follows that the
competitive equilibriums are in need of social shaping at the
network level.

In this paper, multi-agent systems with decentralized re-
source allocation are entirely self-sustained. We refer to
“resilient multi-agent systems” in the context of multi-agent
systems that can achieve a competitive equilibrium under
which the optimal resource price is acceptable for all agents;
i.e., below a threshold. In what follows, we first consider
multi-agent systems with static local allocation, and we prove
that under general convexity assumptions, the competitive
equilibrium and the social welfare equilibrium exist and
agree. As opposed to the commonly applied KKT arguments
[27], our proof is based on duality theory providing a more
direct way of connecting the competitive equilibrium to the
social welfare equilibrium, and supporting a more general
(e.g. nonsmooth) class of utility functions. Next, we propose
a social shaping problem for a competitive equilibrium
aiming to bound the optimal resource price below a socially
acceptable threshold. By means of constructive analysis, we
show that agent utility function is prescribed by a family
of socially admissible quadratic functions, under which the
pricing at the competitive equilibrium is always below a
threshold. Finally, we extend the study to dynamical multi-
agent systems where agents are associated with dynamical



states from linear processes, and prove that the dynamic com-
petitive equilibrium and social welfare equilibrium continue
to exist and coincide in an optimal control context.

The remainder of the paper is organized as follows. In
Section II, we introduce the multi-agent system with static
decisions. In Section III, we formulate social shaping of
competitive equilibriums for resilient multi-agent systems. In
Section IV, we formulate dynamic pricing for resource allo-
cation of multi-agent systems with an underlying dynamical
process. Numerical examples are presented in Section V and
concluding remarks are presented in Section VI.

II. STATIC MULTI-AGENT SYSTEMS

A. Competitive Equilibrium for Static Multi-Agent Systems

We consider a multi-agent system (MAS) with n agents.
The agents are indexed by V = {1, . . . , n}. We consider a
basic MAS setup with static decisions on load allocation.

MAS with Static Load Decisions (MAS-SLD). Each agent i
holds a local resource of ai units, and make a (static) decision
to allocate xi ∈ R≥0 units of load for itself. The utility
function related to agent i allocating xi amount of load is
fi(xi) : R≥0 7→ R. Consequently, agent i would incur an ai−
xi amount of surplus (ai > xi), or a shortcoming (ai < xi).
We assume that there is a connected network among the n
agents so that they can balance the surplus and shortcomings
through a pricing mechanism. To be precise, each unit of
resource across the network is priced at λ ∈ R. Therefore,
agent i will yield (ai − xi)λ in income or spending.

Denoting x = (x1 . . . xn)> as the network resource
allocation profile, we introduce the following definitions.

Definition 1. A pair of price-allocation decisions (λ∗, x∗) is
a competitive equilibrium for the MAS-SLD if the following
conditions hold:

(i) Each agent i maximizes her combined payoff at x∗i , i.e.,
x∗i is an optimizer of the solution to the following constrained
optimization problem:

max
xi

fi(xi) + λ∗(ai − xi)

s.t. xi ∈ R≥0.
(1)

(ii) The total demand and supply are balanced across the
network:

n∑
i=1

x∗i =

n∑
i=1

ai. (2)

Definition 2. A resource allocation profile x? is a social
welfare equilibrium for the MAS-SLD if it is a solution to
the following optimization problem:

max
x

n∑
i=1

fi(xi)

s.t.

n∑
i=1

xi =

n∑
i=1

ai,

xi ∈ R≥0; i ∈ V.

(3)

We present the following result which establishes the
equivalence between a competitive equilibrium and a social
welfare equilibrium. The result is based only on a concavity
assumption for the utility functions fi.

Theorem 1. Consider the MAS-SLD. Suppose each fi(·)
is concave over the domain R≥0. Then the social welfare
equilibrium(s) and the competitive equilibrium(s) coincide.
To be precise, the following statements hold.

(i) If (λ∗, x∗) is a competitive equilibrium, then x∗ is a
social welfare equilibrium.

(ii) If x? is a social welfare equilibrium, then there exists
λ∗ ∈ R such that (λ∗, x?) is a competitive equilibrium.

Proof. A proof is in [28, Theorem 1]. A numerical example
for validating Theorem 1 can be referred to [28, Example
1(i)].

Clearly, in this basic multi-agent system setup, the price λ∗

associated with a competitive equilibrium could take negative
values. From an economic point of view, the resource at
every agent must either be consumed or traded, and in
cases of an oversupply of resource a negative price for load
balancing would occur. From an optimization point of view,
the price λ∗ is the Lagrange multiplier associated with an
equality constraint for a constrained optimization problem,
which can take positive or negative sign. The following result
indicates that as long as one agent is associated with a non-
decreasing utility function, oversupply will not happen.

Proposition 1. Consider the MAS-SLD. Suppose each fi(·)
is concave over the domain R≥0. Let (λ∗, x∗) be a compet-
itive equilibrium. Then λ∗ ≥ 0 if there exists at least one
agent m ∈ V such that fm(·) is non-decreasing.

Proof. See [28, Proposition 1].

B. MAS with Trading Decisions

In our standing multi-agent system model, agents only de-
cide on their allocated load xi, and the surplus/shortcoming
ai − xi have to go to the network. Now we relax this
restriction, and introduce the following extended MAS.

MAS with Static Load and Trading Decisions (MAS-
SLTD) On top of the MAS-SLD, each agent i further makes
a decision on the traded amount of resource, denoted ei. This
ei is physically constrained by xi and ai in the following way
(i) if xi < ai, then agent i can sell, in which case ei ≥ 0

and ei ≤ ai − xi;
(ii) if xi ≥ ai, then agent i can only buy, in which case

ei ≤ 0 and ei = ai − xi.
Let λ∗ continue to be the price for a unit of shared

resource. Denote e = (e1 . . . en)> as the vector representing
the traded resource profile across the network.

Definition 3. A triplet of price-allocation-trade profile (λ∗,
x∗, e∗) is a competitive equilibrium for the MAS-SLTD if
the following conditions hold:

(i) Each agent i maximizes her combined payoff at (x∗,
e∗) while meeting the physical constraint, i.e., (x∗i , e∗i ) is



an optimizer of the solution to the following constrained
optimization problem:

max
xi,ei

fi(xi) + λ∗ei

s.t. xi + ei ≤ ai,
xi ∈ R≥0, ei ∈ R.

(4)

(ii) The total demand and supply are balanced across the
network:

n∑
i=1

e∗i = 0. (5)

Definition 4. A pair of resource allocation-trade profile
(x?, e?) is a social welfare equilibrium for the MAS-SLTD if
it is an optimizer of the solution to the following optimization
problem:

max
x,e

n∑
i=1

fi(xi) (6)

s.t.

n∑
i=1

ei = 0, (7)

xi + ei ≤ ai; i ∈ V, (8)

xi ∈ R≥0, ei ∈ R; i ∈ V. (9)

Theorem 2. Consider the MAS-SLTD. Suppose each fi(·)
is concave over the domain R≥0. Then the social welfare
equilibrium(s) and the competitive equilibrium(s) continue
to coincide under the shared load decisions for the agents.
To be precise, the following statements hold.

(i) If (λ∗,x∗, e∗) is a competitive equilibrium, then
(x∗, e∗) is a social welfare equilibrium.

(ii) If (x?, e?) is a social welfare equilibrium, then there
exists λ∗ ∈ R such that (λ∗,x?, e?) is a competitive equilib-
rium.

Proof. A proof is in [28, Theorem 2]. A numerical example
for validating Theorem 2 can be referred to [28, Example
1(ii)].

Proposition 2. Consider the MAS-SLTD. Suppose each fi(·)
is concave over the domain R≥0. Let (λ∗,x∗, e∗) be a
competitive equilibrium under the agent trading decisions.
Then there always holds that λ∗ ≥ 0.

Proof. See [28, Proposition 2].

III. SOCIAL SHAPING FOR COMPETITIVE EQUILIBRIUM

Consistent with classical welfare economics theory, a
competitive equilibrium, despite being a social welfare equi-
librium as well, indicates nothing about fairness or sustain-
ability [29]. If the optimal pricing λ∗ is too high, agents
would quit the system, instead of participating in the self-
sustained multi-agent system. When members leave the sys-
tem, the achievable payoff for the remaining agents would go
down. Therefore, the agents share a social responsibility in
shaping their utility functions so that λ∗ is within a socially
acceptable range.

A. Shaping the Competitive Equilibrium

Now we present an approach to achieve a socially ac-
ceptable competitive equilibrium, by synthesizing a class of
utility functions from which agents can select. We make the
following assumption.

Assumption 1. Each fi is represented by fi(xi) = − 1
2bix

2
i +

kixi, where bi ∈ R>0 and ki ∈ R≥0; a utility function fi
is socially admissible if there hold ki ∈ [kmin, kmax] and
bi ∈ [bmin, bmax].

Let λ† > 0 represent the highest pricing for λ∗ that agents
can accept, and we term such a competitive equilibrium λ∗ ≤
λ† a socially resilient equilibrium. Let a = (a1 . . . an)>

represent the network resource allocation profile, and let
C :=

∑n
i=1 ai represent the network resource capacity.

Assuming C and a are given network characteristics, we
consider the following problem of shaping the competitive
equilibrium.
Problem. (Social Competitive Equilibrium Shaping) Con-
sider the MAS-SLD. Find the range for kmin, kmax, bmin,
bmax under which there always exists a competitive equilib-
rium that leads to 0 ≤ λ∗ ≤ λ†, for all socially admissible
utility functions.

B. Socially Admissible Utility Functions

Denote k = (k1, . . . , kn)> and b = (b1, . . . , bn)>. For
two vectors l = (l1, . . . , ln)> and l′ = (l′1, . . . , l

′
n)>, we

write l � l′ if there holds li ≤ l′i for all i ∈ V. In other
words, � defines a partial order for all vectors in Rn.

Define

S∗ :=
{(
kmin, kmax, bmin, bmax

)
∈ R4
≥0 :

nkmin

bmax
≥ C;

− nkmin

bmax
+
nkmax

bmin
≤ C;− nλ†

bmax
+
nkmax

bmin
≤ C

}
.

(10)
We present the following theorem.

Theorem 3. Consider the MAS-SLD. Let Assumption 1 hold.
The following statements hold.

(i) The competitive equilibrium is unique, and therefore,
there exists a well-defined mapping, denoted by F(·, ·), that
maps (k,b) to λ∗ := F(k,b) where λ∗ belongs to the
competitive equilibrium.

(ii) The competitive equilibrium is always socially resilient
(ie λ∗ ≤ λ†) for all socially admissible utility functions as
long as (kmin, kmax, bmin, bmax

)
∈ S∗.

(iii) Let (kmin, kmax, bmin, bmax

)
∈ S∗ be given. The

mapping F(·, ·) is monotone under the partial order � over
k in the sense that

F(k,b) ≤ F(k′,b)

for all socially admissible k � k′.

Proof. See [28, Theorem 3].



IV. DYNAMIC MULTI-AGENT SYSTEMS

A. MAS with Dynamic Agent Load/Trading Decisions

Here we consider the load balancing problem for dynam-
ical multi-agent systems.

MAS with Dynamic Load/Trading Decisions (MAS-
DLTD). Each agent i ∈ V is associated with a dynamical
state yi(t) ∈ Rm, described by

yi(t+ 1) = Aiyi(t) + Biui(t), t ∈ T, (11)

where ui(t) ∈ Rd is the control input, and Ai and Bi are real
matrices with proper dimensions. The time steps are indexed
by T = {0, . . . , T−1}. Associated with t ∈ T, agent i incurs
a utility function fi(yi(t),ui(t)); the terminal utility for
agent i is Φi(yi(T )). Upon taking the control action ui(t),
the required resource is defined by the function hi(ui(t)).
If we, on a winter’s day, turn on more heat in a room, the
temperature will start rising. The change is largest in the
beginning, and “eventually” the temperature will approach
a new steady state value. Each agent can produce an ai(t)
units of resource at time t, and also makes a trading decision
ei(t) units of resource over the network at time t. Similarly,
(i) if hi(ui(t)) < ai(t), then agent i can sell, in which case

ei(t) ≥ 0 and ei(t) ≤ ai(t)− hi(ui(t));
(ii) if hi(ui(t)) ≥ ai(t), then agent i will buy, in which

case ei(t) ≤ 0 and ei(t) = ai(t)− hi(ui(t)).
We denote λ = (λ0 . . . λT−1)> as the pricing vector through
the time horizon, where λt is the unit price for traded energy
at step t. Consequently, the payoff of agent i throughout
[0, T ] is described by

T−1∑
t=0

(
fi(yi(t),ui(t)) + λtei(t)

)
+ Φi(yi(T )).

Denote y(t) = (y1(t)> . . .yn(t)>)>, u(t) =
(u1(t)> . . .un(t)>)>, and e(t) = (e1(t)> . . . en(t)>)>.
Further define Y = (y(0)> . . .y(T )>)>, U =
(u(0)> . . .u(T − 1)>)> and E = (e(0)> . . . e(T − 1)>)>.
Also introduce Ui = (ui(0)> . . .ui(T − 1)>)>, Ei =
(ei(0)> . . . ei(T−1)>)> and ai = (ai(0)> . . . ai(T−1)>)>.

Definition 5. Let y(0) = y0 ∈ Rmn be given. A triple
of price-control-trading profiles (λ∗,U∗,E∗) is a dynamic
competitive equilibrium if the following conditions hold:

(i) Each agent i maximizes its combined payoff under U∗i
and E∗i :

max
Ui,Ei

T−1∑
t=0

(
fi(yi(t),ui(t)) + λ∗t ei(t)

)
+ Φi(yi(T ))

s.t. yi(t+ 1) = Aiyi(t) + Biui(t), t ∈ T,

ei(t) ≤ ai(t)− hi(ui(t)), t ∈ T;
(12)

(ii) The total demand and supply are balanced across the
network for all time, i.e., there holds

n∑
i=1

ei(t) = 0, t ∈ T. (13)

Definition 6. Let y(0) = y0 ∈ Rmn be given. A pair of
control-trading profiles (U?,E?) is a dynamic social welfare
equilibrium if it is a solution to the following optimal control
problem:

max
U,E

n∑
i=1

( T−1∑
t=0

fi(yi(t),ui(t)) + Φi(yi(T ))
)

(14)

s.t. yi(t+ 1) = Aiyi(t) + Biui(t), t ∈ T, i ∈ V,
(15)

ei(t) ≤ ai(t)− hi(ui(t)), t ∈ T, i ∈ V, (16)
n∑

i=1

ei(t) = 0, t ∈ T. (17)

B. Dynamic Competitive Equilibrium

We impose the following assumption.

Assumption 2. (i) the Φi are concave functions for i ∈ V;
(ii) the fi are concave functions for i ∈ V; (iii) the hi are
nonnegative convex functions for i ∈ V, and hi(z) < b
defines a bounded open set of z in Rm for b > 0; (iv)∑n

i=1 ai(t) > 0 for all t ∈ T.

We present the following result which establishes the
similar connection between the competitive equilibrium and
the social welfare equilibrium under this dynamic setting.

Theorem 4. Consider the MAS-DLTD with y(0) = y0 ∈
Rmn be given. Let Assumption 2 hold. The dynamic social
welfare equilibrium(s) and the dynamic competitive equilib-
rium(s) coincide and the following statements hold.

(i) If (λ∗,U∗,E∗) is a dynamic competitive equilibrium,
then (U∗,E∗) is a dynamic social welfare equilibrium.

(ii) If (U?,E?) is a dynamic social welfare equilibrium,
then there exists λ∗ ∈ RT such that (λ∗,U?,E?) is a
competitive equilibrium.

Proof. See [28, Theorem 4].

V. NUMERICAL EXAMPLES

A. MAS with Static Decisions

Example 1. Consider a multi-agent system with four agents.
The utility function for agent i is in the quadratic form fi =
− 1

2bix
2
i + kixi for i = 1, 2, 3, 4. We consider two pairs of

system parameters

b = (2, 5, 3, 4)> k = (21, 17, 23, 13)>; (PM.1)

b
′

= (2, 5, 3, 4)> k
′

= (25, 22, 24, 14)>. (PM.2)

Let the network resource capacity C =
∑4

i=1 ai take
values in an interval (0, 40). We sample the interval (0, 40)
uniformly with a step-size 0.8 to obtain 50 different values
for C. For each C, we compute the optimal prices of the
system under MAS-SLD and MAS-SLTD.

For MAS-SLD, the optimal dual variables λ∗(PM.1)
SLD and

λ
∗(PM.2)
SLD are computed for 50 times corresponding to each

value of C by solving (3), respectively, under the parameter
settings (PM.1) and (PM.2). For MAS-SLTD, the optimal
dual variables τ∗(PM.1)

SLTD and τ∗(PM.2)
SLTD related to the equality



constraint (7) are also computed for 50 times corresponding
to each value of C by solving (6)-(9), respectively, under
the parameter setting (PM.1) and (PM.2), and then we take
λ
∗(PM.1)
SLTD = −τ∗(PM.1)

SLTD and λ∗(PM.2)
SLTD = −τ∗(PM.2)

SLTD . In Fig. 1,
we plot 50 points of optimal prices versus C, to obtain an
approximate trajectory of optimal price as a function of C.

From Fig. 1 we observe that the optimal price λ∗SLD
in MAS-SLD can indeed take negative values; while the
optimal price λ∗SLTD in MAS-SLTD is always non-negative.
These observations are consistent with Proposition 1 and
Proposition 2. Moreover, for both MAS-SLD and MAS-
SLTD, we observe in Fig. 1 that the optimal prices
λ∗SLD, λ

∗
SLTD are decreasing as the network resource capacity

C increases. �

Example 2. Consider a MAS-SLD with three agents and
network capacity C = 18. Each agent’s utility function is set
as the quadratic form fi = − 1

2bix
2
i +kixi for i = 1, 2, 3. The

system’s highest pricing for λ∗ that agents can accept socially
is assumed to be λ† = 39. Take bmin = 4, bmax = 6, kmin =
40, and kmax = 50. We can verify such a configuration of
(bmin, bmax, kmin, kmax) is a point in S∗ defined in (10).

(i) Let b be fixed to be b = (4, 5, 6)>. Take k3 = 44, 48,
respectively. We sample the space for (k1, k2) ∈ [40, 50]2

and compute the optimal pricing λ∗ by solving the optimal
dual variable of (3). Then we plot the contour maps for the
optimal price as a function of k1 and k2 in the first row of
Fig. 2.

(ii) Let k be fixed to be k = (44, 46, 48)>. Take b3 =
4.8, 5.2, respectively. We sample the space for (b1, b2) ∈
[4, 6]2 and compute the optimal pricing λ∗ by solving the
optimal dual variable of (3). Then we plot the contour maps
for the optimal price as a function of b1 and b2 in the second
row of Fig. 2.

In Fig. 2 we observe that the maximum value for the price
λ∗ is 20, which is lower than λ† = 39. This illustrates all

Fig. 1: The optimal prices as functions of the network
resource capacity for MAS-SLD and MAS-SLTD under two
different parameter settings (PM.1) and (PM.2).

Fig. 2: The first row: contour maps for the optimal price as
a function of k1 and k2. The second row: contour maps for
the optimal price as a function of b1 and b2.

socially admissible utility functions for parameters in the set
S∗ lead to socially acceptable prices, providing a validation
for Theorem 3(ii). From the first row of Fig. 2, the optimal
price is monotone under the partial order � with respect to
k, which is consistent with Theorem 3(iii). �

B. MAS with Dynamic Decisions

Example 3. Consider a MAS-DLTD with three agents. The
setting for this MAS-DLTD can be referred to [28, Example
4]. Let the time horizon take the value of T = 30. We
compute the dynamic social welfare equilibrium (U?,E?)
by solving the optimization problem (14)-(17) and the opti-
mal dual variables −λ∗ corresponding to (17). Given λ∗,
we further compute the dynamic competitive equilibrium
(U∗,E∗) by solving (12). In Fig. 3, we plot the dynamic
social welfare equilibrium and the dynamic competitive
equilibrium. In Fig. 3, we observe that the dynamic social
welfare equilibrium and the dynamic competitive equilibrium
agree, which is consistent with Theorem 4. �

VI. CONCLUSIONS

In this paper, we studied multi-agent systems with de-
centralized resource allocation without external resource
supply. For multi-agent systems with static local allocation,
we showed that under general convexity assumptions, the
competitive equilibrium and the social welfare equilibrium
exist and agree using a duality analysis. An important aspect
of this paper is our formulation of the social shaping problem
for competitive equilibriums, where the optimal pricing is
associated with an upper bound. We also presented an
explicit family of socially admissible utility functions under
which the optimal pricing at a competitive equilibrium is
always socially acceptable. A major contribution of this
paper is our study of dynamical multi-agent systems and we
have generalized it in an optimal control context. We proved



Fig. 3: The dynamic social welfare equilibrium (with super-
script F) and competitive equilibrium (with superscript ∗).

that the dynamic competitive equilibrium and social welfare
equilibrium continue to exist and coincide with each other.
Future research to smooth dynamic optimal pricing for MAS
with dynamic decisions is possible. Future work to construct
a range of socially admissible utility functions in a generic
way is also possible.
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