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a b s t r a c t

In this paper, we study multi-agent systems with decentralized resource allocations. Agents have local
demand and resource supply, and are interconnected through a network designed to support sharing
of the local resource; and the network has no external resource supply. It is known from classical
welfare economics theory that by pricing the flow of resource, balance between the demand and
supply is possible. Agents decide on the consumed resource, and perhaps further the traded resource
as well, to maximize their payoffs considering both the utility of the consumption, and the income
from the trading. When the network supply and demand are balanced, a competitive equilibrium is
achieved if all agents maximize their individual payoffs, and a social welfare equilibrium is achieved
if the total agent utilities are maximized. First, we consider multi-agent systems with static local
allocations, and prove from duality theory that under general concavity assumptions, the competitive
equilibrium and the social welfare equilibrium exist and agree. Next, we show that the agent utility
functions can be prescribed in a family of socially admissible functions, under which the resource price
at the competitive equilibrium is kept below a threshold. Finally, we extend the study to dynamical
multi-agent systems where agents are associated with dynamical states from linear processes, and
prove that the dynamic competitive equilibrium and the dynamic social welfare equilibrium continue
to exist and coincide with each other. In addition, we also present a recursive representation of the
competitive equilibriums using dynamic programming, and a receding horizon approach for smoothing
the dynamic pricing as a dynamic competitive equilibrium social shaping method.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Next generation technologies are leveraging the internet of
hings (IoT) to support critical infrastructure systems includ-
ng energy distribution and automotive transportation, and are
eing organized as interconnected multi-agent systems (Mes-
ahi & Egerstedt, 2010). Such systems involve data collection,
esource allocation, and control coordination between geograph-
cally distributed subsystems. Each subsystem, termed an ‘agent’,
s an intelligent functioning unit with its own decisions, ob-
ectives and preferences, and remarkably, network-level goals
uch as consensus, formation, and optimality can be achieved by
gents interacting with others over a network (Jadbabaie, Lin, &
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Morse, 2003; Martinez, Cortes, & Bullo, 2007; Nedić, Ozdaglar,
& Parrilo, 2010; Olfati-Saber & Murray, 2004; Tsitsiklis, 1984).
The underlying network for multi-agent systems can be physical
such as transmission lines in a power grid, non-physical such
as wireless communication channels, or a combination of the
two. The key promise of organizing subsystems into networked
multi-agent systems is a radical improvement in scalability, effi-
ciency, and sustainability through shared inputs and outputs, and
coordinated decisions and controls.

One important problem for multi-agent system operation is
efficient resource allocation, where demand and supply must
be balanced for efficient and secure operations at the system
level. In a typical resource allocation problem, agents have local
demand and internal and external resource suppliers, intercon-
nected through a network that allows for transmission of the re-
source. In light of classical welfare economics theory (Mas-Colell,
Whinston, Green, et al., 1995), careful pricing of the transmission
flow potentially balances the demand against the supply across
the entire system. Agents decide on the resource consumed, and
perhaps further the resource traded, to maximize their payoffs
considering both the utility from consumption, and income from
the trading. When network supply and demand is balanced, a
competitive equilibrium is achieved if all agents maximize their
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ndividual payoffs; a social welfare equilibrium is achieved if the
otal agent utilities are maximized, which in turn maximizes the
verall system-level payoff.
The concept of operating a multi-agent system as a market via

ptimal pricing under a competitive equilibrium has applications
n smart grid operations and climate-economy systems. In smart
rids, agents represent households, and by optimally pricing en-
rgy, we ensure the payoff for all households are maximized
ubject to the balance of energy supply and demand (Alvarado,
eng, DeMarco, & Mota, 2001; Chen, Li, Low, & Doyle, 2010; Jad-
av, Patne, & Guerrero, 2018; Jokić, Lazar, & Van den Bosch, 2010;
nudsen, Hansen, & Annaswamy, 2015; Li, Chen, & Low, 2011;
i, Lian, Conejo, & Zhang, 2020; Muthirayan, Kalathil, Poolla, &
araiya, 2019; Papadaskalopoulos & Strbac, 2013; Singh, Kumar,
Xie, 2018; Stegink, De Persis, & Van der Schaft, 2016; Zhang
Papachristodoulou, 2015). In climate-economy systems, agents

epresent countries, and optimal pricing of carbon emissions en-
ures the interests of each country are met subject to a carbon
mission supply–demand balance (Nordhaus, 2011, 2017; Nord-
aus & Boyer, 2003). However, in both cases, the optimally com-
uted price is potentially not socially acceptable. For example,
n February 2021, the electricity price in Texas went to an un-
cceptably high rate after widespread power outages. Consumers
ho were involved in the market-based contract must pay sky-
igh electricity bills, which exceeded their budgets (Blumsack,
022; Morehouse, 2022). Moreover, the carbon emissions trad-
ng scheme under the Kyoto Protocol was widely criticized by
esearchers, as the estimated social cost of carbon was deemed as
nacceptable among different regions (Kuyper, Schroeder, & Lin-
ér, 2018; Napoli, 2012). We refer to Kellett, Weller, Faulwasser,
rüne, and Semmler (2019) for an excellent introduction to the
ynamic integration of climate and economy models from a feed-
ack system perspective. Both examples raise the problem that
oundedness of the resource price is not guaranteed.
However, in the extensive literature of economics and en-

ineering, early and recent studies focus on the rapid changes
n the pricing process termed price volatility, rather than the
esource price itself. The Black Scholes formula (Black & Sc-
oles, 1973) and Heston’s extension (Heston, 1993) are the most
epresentative models of stochastic price volatility. In Kizilkale
nd Mannor (2010), Kizilkale and Mannor argue that previous
odels do not penalize price volatility in the system-level ob-

ective. They modify the system objective to account for price
olatility and construct a dynamic game-theoretic framework
or power markets. In Tsitsiklis and Xu (2015), Tsitsiklis and
u suggest a different dynamic game-theoretic model of elec-
ricity markets with the incorporation of ancillary service cost,
nd propose a pricing mechanism that has the potential to re-
uce the peak load. In Wei, Malekian, and Ozdaglar (2014), Wei,
alekian and Ozdaglar consider the dual version of the system-

evel welfare optimization problem. An explicit penalty term on
he L − 2 norm of price volatility is introduced in the system
bjective, which allows trade-offs between price volatility and
ocial welfare. These methods strike trade-offs between economic
fficiency and price volatility. In other words, one has to compro-
ise system efficiency in order to reduce price volatility, which
auses an inevitable supply–demand mismatch. Furthermore, to
he authors’ best knowledge, none of the existing pricing mech-
nisms can limit the range of the resource price required at a
ompetitive equilibrium in a formal way. It indicates that the
esource price might remain unacceptable among agents who
ight opt out of the system afterwards. This can be a significant
ractical problem due to its failure of considering implicit agents’
udgetary constraints (Sinha & Anastasopoulos, 2017).
Consequently, it motivates us to focus on the resource price

tself and propose a new social shaping problem for a compet-
tive equilibrium aiming to bound the resource price below a
2

socially acceptable threshold. To this end, Section 3 considers
parameterized utility functions whose parameters are completely
abstracted from agents’ preferences and prescribe a range for
the parameters of utility functions to ensure that the resource
price under a competitive equilibrium is socially acceptable for
all agents without mismatching supply and demand. The idea
of introducing parameterized utility functions comes from the
concept of smart thermostat agent in the AEP Ohio gridSMART
Demonstration (Widergren, Fuller, Marinovici and Somani, 2014;
Widergren et al., 2014). Agents are provided with an interface
(usually a slider) to specify their preference settings for relative
comfort and savings. The two sides of the slider represent the
maximum comfort and maximum savings, respectively. The pa-
rameters in utility functions reflect the extent to which agents
have preferences towards comfort or towards savings. When a
agent chooses to move the slider towards comfort, it indicates
that the agent is willing to maintain comfort regardless of the cost
of resources. When a agent decides to move the slider towards
savings, it implies that the agent would like to sacrifice comfort
for cost savings.

Thermostatically controlled loads (TCLs) in the home, such as
air conditioners, heat pumps, water heaters, and refrigerators, are
well suited to energy arbitrage. The TCLs’ function is to regulate
their internal temperature within specific bounds. There is a
specific average power that is necessary to fulfil this function
under nominal local management. Many TCLs offer two modes
of operation: powered at a set level and unpowered, and keep
temperatures within dead-bands in both. Agents are satisfied
if temperatures remain within their designated settings. Prior
studies have showed the possibility to model an aggregation
of heterogeneous TCLs by dynamical systems (Hao, Sanandaji,
Poolla, & Vincent, 2013; Mathieu, Kamgarpour, Lygeros, Anders-
son, & Callaway, 2014; Mortensen & Haggerty, 1990). It motivates
us to extend our study to dynamical multi-agent systems in
Section 4.

Contribution. In this paper, multi-agent systems with decen-
tralized resource allocation are entirely selfsustained. Our contri-
butions are summarized as follows:

(i) We first consider multi-agent systems with static local al-
location, and prove from a duality argument that under
general concavity assumptions, the competitive equilibrium
and the social welfare equilibrium exist and agree.

(ii) We then formulate a new social shaping problem to in-
vestigate the case when the optimal resource price at the
competitive equilibrium is associated with an upper bound
for social acceptance. We focus on a fundamental class of
quadratic utility functions, and show that the social shaping
problem can be explicitly solved by prescribing a family
of socially admissible quadratic functions that agents can
select from.

(iii) We extend the study to dynamical multi-agent systems
where agents are associated with dynamical states from
linear processes, and prove that the dynamic competitive
equilibrium and the dynamic social welfare equilibrium con-
tinue to exist and coincide in the context of optimal control,
again from a duality perspective. We also present a re-
cursive way of representing and computing the dynamic
competitive equilibrium in view of the dynamic program-
ming principle. In order to shape the dynamic pricing in
the sense that the pricing trajectory would be stationary,
we propose a receding horizon approach for smoothing the
dynamic pricing.

Some preliminary results of our work were presented in Chen,
Islam, Ratnam, Petersen, and Shi (2021). The remainder of the
paper is organized as follows. In Section 2, we introduce the
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ulti-agent system with static decisions. In Section 3, we define
new social shaping problem for multi-agent systems and pre-
cribe a family of socially admissible quadratic functions under
hich the optimal resource price is always acceptable for all
gents. In Section 4, we formulate dynamic pricing for resource
llocation of multi-agent systems with an underlying dynamical
rocess. Some concluding remarks are presented in Section 5.
ur codes for numerical examples are open-sourced at https:
/github.com/chyj528/MAS-Social-Shaping.

. Static multi-agent systems

In this section, we study multi-agent systems with static re-
ource allocation and load decisions.

.1. Competitive equilibrium for static multi-agent systems

We consider a multi-agent system (MAS) with n agents. The
gents are indexed by V = {1, . . . , n}. We consider a basic MAS
etup with static agent decisions on load allocations.
MAS with Static Agent Load Decisions (MAS-SALD). Each

gent i holds a local resource of ai units, and makes a (static)
decision to allocate xi ∈ R≥0 units of load for itself. The utility
function related to agent i ∈ V allocating xi amount of load is
fi(xi) : R≥0

↦→ R. Consequently, agent i would incur an ai − xi
amount of surplus (ai > xi), or a shortcoming (ai < xi). We
assume that there is a connected network among the n agents
so that they can balance the surplus and shortcomings through
a pricing mechanism. To be precise, each unit of resource moved
across the network is priced at λ ∈ R. Therefore, agent i will yield
(ai − xi)λ in income or expenditure.

Denoting x = (x1 . . . xn)⊤ ∈ (R≥0)n as the network resource
allocation profile, we introduce the following definitions.

Definition 1. A pair of price-allocation decisions (λ∗, x∗) is a com-
petitive equilibrium for the MAS-SALD if the following conditions
hold:

(i) each agent i maximizes her combined payoff at x∗

i , i.e., x
∗

i
is an optimizer of the solution to the following constrained opti-
mization problem:

max
xi

fi(xi) + λ∗(ai − xi)

s.t. xi ∈ R≥0.
(1)

(ii) the total demand and supply are balanced across the
network:

n∑
i=1

x∗

i =

n∑
i=1

ai. (2)

Definition 2. A resource allocation profile x⋆ is a social welfare
equilibrium for the MAS-SALD if it is a solution to the following
optimization problem:

max
x

n∑
i=1

fi(xi)

s.t.
n∑

i=1

xi =

n∑
i=1

ai,

xi ∈ R≥0
; i ∈ V.

(3)

We present the following result which establishes the equiv-
alence between a competitive equilibrium and a social welfare
equilibrium. The result is based only on a concavity assumption

for the utility functions fi.

3

Theorem 1. Consider the MAS-SALD. Suppose each fi(·) is concave
over the domain R≥0. Then the social welfare equilibrium(s) and
the competitive equilibrium(s) coincide. To be precise, the following
statements hold.

(i) If (λ∗, x∗) is a competitive equilibrium, then x∗ is a social
welfare equilibrium.

(ii) If x⋆ is a social welfare equilibrium, then there exists λ∗
∈ R

such that (λ∗, x⋆) is a competitive equilibrium.

Proof. (i) Let (λ∗, x∗) be a competitive equilibrium. The proof
proceeds by contradiction. Suppose that x∗ is not a social wel-
are equilibrium. Then there must exist x̄∗ such that

∑n
i=1 x̄

∗

i =
n
i=1 x

∗

i =
∑n

i=1 ai, and
∑n

i=1 fi(x
∗

i ) <
∑n

i=1 fi(x̄
∗

i ). Consequently,
here holds
n

i=1

(
fi(x∗

i ) + λ∗(ai − x∗

i )
)

<

n∑
i=1

(
fi(x̄∗

i ) + λ∗(ai − x̄∗

i )
)
. (4)

his implies that there is at least one m ∈ V such that

m(x∗

m) + λ∗(am − x∗

m) < fm(x̄∗

m) + λ∗(am − x̄∗

m),

hich contradicts the fact that (λ∗, x∗) is a competitive equilib-
ium.

(ii) We propose a proof using duality. To be consistent with
he literature on duality theory for continuous optimization, we
enote gi = −fi, and rewrite (3) as

in
x

n∑
i=1

gi(xi)

s.t.
n∑

i=1

xi =

n∑
i=1

ai; xi ∈ R≥0, i ∈ V.

(5)

et x⋆ be a social welfare equilibrium.1 Then from its definition
here holds

∑n
i=1 x

⋆
i =

∑n
i=1 ai. Since (5) is a convex optimiza-

ion problem with a linear equality constraint, strong duality
olds (Boyd, Boyd, & Vandenberghe, 2004) and we denote the
ptimal primal and dual costs of (5) as p∗ and d∗, respectively.
The Lagrange function of (5) is

(x, λ) =

n∑
i=1

gi(xi) + λ

( n∑
i=1

xi −
n∑

i=1

ai
)

: (R≥0)n × R ↦→ R.

hen we introduce L∗(λ) = minx∈(R≥0)n L(x, λ). If λ∗ is dual
ptimal (i.e., λ∗

∈ argmaxλ∈R L∗(λ)), there holds from strong
uality (Boyd et al., 2004) that
∗

= L∗(λ∗) = min
x∈(R≥0)n

L(x, λ∗) (6)

≤ L(x⋆, λ∗) (7)

=

n∑
i=1

gi(x⋆
i ) (8)

= p∗. (9)

his implies the inequality from the above equation actually holds
t equality:
⋆
∈ arg min

x∈(R≥0)n
L(x, λ∗). (10)

ote that L(x, λ∗) =
∑n

i=1

(
gi(xi) + λ∗(xi − ai)

)
implies

⋆
i ∈ arg max

xi∈R≥0

(
fi(xi) + λ∗(ai − xi)

)
. (11)

hus, we have proved that (λ∗, x⋆
i ) is a competitive

quilibrium. □

1 Note that x⋆ must be finite as the feasible set of x is compact.

https://github.com/chyj528/MAS-Social-Shaping
https://github.com/chyj528/MAS-Social-Shaping
https://github.com/chyj528/MAS-Social-Shaping
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Clearly, in this basic multi-agent system setup, the price λ∗

ssociated with a competitive equilibrium could take negative
alues. From an economic point of view, the resource at every
gent must either be consumed or traded, and in cases of an
versupply of resource a negative price for load balancing would
ccur. From an optimization point of view, the price λ∗ is the
agrange multiplier associated with an equality constraint for
constrained optimization problem, which can take positive or
egative values. Proposition 1 indicates that as long as one agent
s associated with a non-decreasing utility function, oversupply
ill not happen.

roposition 1. Consider the MAS-SALD. Suppose each fi(·) is con-
ave over the domain R≥0. Let (λ∗, x∗) be a competitive equilibrium.
hen λ∗

≥ 0 if there exists at least one agent m ∈ V such that fm(·)
s non-decreasing.

roof. Let fm(·) be non-decreasing. Assume λ∗ < 0. Then
m(xm)+λ∗(am − xm

)
is a strictly increasing function with respect

o xm. Therefore, there cannot be a finite x∗
m such that x∗

m ∈

argmaxxm∈R≥0
(
fm(xm)+λ∗(am − xm)

)
, contradicting the definition

of the competitive equilibrium. □

2.2. MAS with trading decisions

In our standing multi-agent systemmodel, agent i only decides
on its allocated load xi with the surplus/shortcoming ai − xi
returned to the network. Next we relax the network restriction,
and introduce the following extended MAS.

MAS with Static Agent Load and Trading Decisions (MAS-
SALTD) Here we extend the MAS-SALD. Each agent i further
makes a decision on the traded amount of resource, denoted ei.
As one recent example, ei is physically constrained by xi and ai in
the following way:

(i) if xi < ai, then agent i can sell, in which case ei ≥ 0 and
ei ≤ ai − xi;

(ii) if xi ≥ ai, then agent i can only buy, in which case ei ≤ 0
and ei = ai − xi.

Let λ∗ continue to represent the price for a unit of shared
resource. Denote e = (e1 . . . en)⊤ as the vector representing the
traded resource profile across the network.

Definition 3. A triplet of price-allocation-trade profile (λ∗, x∗, e∗)
s a competitive equilibrium for the MAS-SALTD if the following
onditions hold:
(i) Each agent i maximizes her combined payoff at (x∗, e∗)

hile meeting the physical constraint, i.e., (x∗

i , e
∗

i ) is an opti-
izer of the solution to the following constrained optimization
roblem:

ax
xi,ei

fi(xi) + λ∗ei

s.t. xi + ei ≤ ai,

xi ∈ R≥0, ei ∈ R.

(12)

(ii) The total demand and supply are balanced across the
etwork:
n∑

i=1

e∗

i = 0. (13)

efinition 4. A pair of resource allocation-trade profile (x⋆, e⋆)
s a social welfare equilibrium for the MAS-SALTD if it is an
ptimizer to the following optimization problem:

ax
x,e

n∑
fi(xi) (14)
i=1

4

s.t.
n∑

i=1

ei = 0, (15)

xi + ei ≤ ai; i ∈ V, (16)

xi ∈ R≥0, ei ∈ R; i ∈ V. (17)

Theorem 2. Consider the MAS-SALTD. Suppose each fi(·) is concave
over the domain R≥0. Then the social welfare equilibrium(s) and
the competitive equilibrium(s) continue to coincide under the shared
load decisions for the agents. To be precise, the following statements
hold.

(i) If (λ∗, x∗, e∗) is a competitive equilibrium, then (x∗, e∗) is a
social welfare equilibrium.

(ii) If (x⋆, e⋆) is a social welfare equilibrium, then there exists
λ∗

∈ R such that (λ∗, x⋆, e⋆) is a competitive equilibrium.

Proof. (i) The proof follows the same analysis as the proof of
Theorem 1(i), where the desired connection is in place with
the definitions of the optimization goals, respectively, for the
competitive equilibrium and the social welfare equilibrium.

(ii) The key idea of the proof continues to be based on strong
duality applied to the definition of the social welfare equilibrium,
as the proof of Theorem 1. However, now the social welfare
equilibrium contains additional inequality constraints; that is xi+
ei ≤ ai, for all i ∈ V. Inevitably, such constraints will lead to
auxiliary dual variables, in addition to the dual variable related
to the equality constraint

∑
ei = 0 if we simply repeat the

proof of Theorem 1. In order to highlight the role of the dual
variable corresponding to the equality constraint, and establish
it as the price in the competitive equilibrium, we need a refined
treatment. To this end, we define a set Xi for all i ∈ V in terms of
the inequality constraint in (16) as Xi = {(xi, ei)|xi + ei ≤ ai; xi ∈

R≥0
; ei ∈ R}. Clearly, Xi is a polyhedral set (see Chapter 3.4.2,

Duality Theory in Bertsekas (2003)). Denoting again fi = −gi, the
problem (14)–(17) can be written as:

min
n∑

i=1

gi(xi)

s.t. (xi, ei) ∈ Xi, i ∈ V
n∑

i=1

ei = 0.

(18)

Let τ be the Lagrange multiplier associated with constraint∑n
i=1 ei = 0. Subsequently, we can define the dual function

where the primal variables are in a polyhedral set as (Bert-
sekas (2003), section 5.1.6): L∗(τ ) =

∑n
i=1 L

∗

i (τ ), where L∗

i (τ ) =

inf(xi,ei)∈Xi

(
gi(xi) + τei

)
, i ∈ V. Let (x⋆, e⋆) be a social welfare

equilibrium and τ ∗ be the dual optimal i.e. τ ∗
∈ argmaxτ∈R L∗(τ ).

Since the problem (18) is feasible and its optimal value is finite,
strong duality holds (Bertsekas (2003), Proposition 5.2.1). This
means that
n∑

i=1

gi(x⋆
i ) = L∗(τ ∗) (19)

=

n∑
i=1

(
inf

(xi,ei)∈Xi

(
gi(xi) + τ ∗ei

))
(20)

≤

n∑
i=1

gi(x⋆
i ) + τ ∗

n∑
i=1

e⋆
i (21)

≤

n∑
i=1

gi(x⋆
i ). (22)
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q. (19) states that the duality gap is zero, (20) comes from the
efinition of the dual function, (21) follows since the minimiza-
ion of

∑n
i=1 gi(xi)+τ ∗

∑n
i=1 ei over (xi, ei) ∈ Xi is always less than

or equal to the value at
∑n

i=1 gi(x
⋆
i )+τ ∗

∑n
i=1 e

⋆
i , (22) follows from∑n

i=1 e
⋆
i = 0. We conclude that the two inequalities hold with

equality which implies (x⋆, e⋆) minimizes
∑n

i=1 gi(xi)+τ ∗
∑n

i=1 ei
over (xi, ei) ∈ Xi. Therefore, there holds

(x⋆, e⋆) ∈ argmin
(xi,ei)∈Xi,

i∈V

n∑
i=1

gi(xi) + τ ∗

n∑
i=1

ei. (23)

Since (23) is separable in all i ∈ V, an equivalent formulation is

(x⋆
i , e

⋆
i ) ∈ argmin

(xi,ei)∈Xi

gi(xi) + τ ∗ei, i ∈ V. (24)

Let us define the equilibrium price λ∗ as λ∗
= −τ ∗. It follows

from (24) that (x⋆
i , e

⋆
i ) is the solution of the following optimization

problem:

max fi(xi) + λ∗ei
s.t. xi + ei ≤ ai

xi ∈ R≥0, ei ∈ R.

(25)

Hence, we conclude that the triplet (λ∗, x⋆, e⋆) is a competitive
equilibrium. □

Remark 1. Similar results as Theorems 1 and 2 have already
existed. In classic microeconomics (Mas-Colell et al., 1995), the
allocation of a competitive equilibrium is shown to be Pareto
optimal. In Jokić, Lazar, and Van den Bosch (2009) and Li, Chen,
and Dahleh (2015), competitive equilibrium and social welfare
equilibrium are proven to be in agreement. In either case, the
utility functions are continuously differentiable and the proofs are
based on KKT optimality conditions. It might be possible to ex-
tend the analysis in Grüne (2016) and Grüne, Kellett, and Weller
(2017) to general concave utility functions based on nonsmooth
KKT optimality conditions (Kanzi, 2011). Here, our proof provides
a direct duality analysis and sheds light on the proof for the
dynamic case, which will be presented later.

In the presence of agent trading decisions, the price λ∗ under
any competitive equilibrium must be non-negative, as shown in
Proposition 2.

Proposition 2. Consider the MAS-SALTD. Suppose each fi(·) is
concave over the domain R≥0. Let (λ∗, x∗, e∗) be a competitive
quilibrium under the agent trading decisions. Then there always
olds that λ∗

≥ 0.

roof. Assume λ∗ < 0. Then fi(xi) + λ∗ei is a strictly decreasing
unction with respect to ei. Since ei is unbounded below and
pper bounded by ei ≤ ai − xi, there cannot be a finite e∗

i such
hat e∗

i ∈ argmaxei∈R
(
fi(xi)+λ∗ei

)
, contradicting the definition of

he competitive equilibrium. This completes the proof. □

.3. Numerical examples

xample 1. Consider a multi-agent system with four agents who
ave local resource (a1, a2, a3, a4) = (13, 14, 4, 7). Each agent i

is associated with a utility function fi which is represented by
fi(xi) = min(kixi, βi) with (k1, k2, k3, k4) = (21, 20, 23, 32) and
(β1, β2, β3, β4) = (135, 600, 130, 150).

(i) Let the multi-agent system be MAS-SALD. The social welfare
quilibrium can be computed by numerically solving the opti-
ization problem (3) as x⋆

= (6.429, 21.23, 5.652, 4.688)⊤, and
he corresponding optimal dual variable is also obtained as λ∗

=
∗
0. Letting λ = 20, we then compute a competitive equilibrium

5

hat satisfies (1)–(2) as x∗
= (6.429, 21.23, 5.652, 4.688)⊤. In

particular, we obtain x∗

1 = 6.429, x∗

3 = 5.652, and x∗

4 = 4.688
by solving (1), and further establish x∗

2 = 21.232 from (2). Clearly
there holds x⋆

= x∗, which is consistent with Theorem 1.
(ii) Let the multi-agent system be MAS-SALTD. We compute

the social welfare equilibrium (x⋆, e⋆) by solving the optimization
problem (14)–(17) as

x⋆
= (6.429, 21.23, 5.652, 4.688)⊤,

e⋆
= (6.571, −7.23, −1.652, 2.313)⊤.

The optimal dual variable τ ∗ corresponding to the equity con-
straint (15) can be obtained as τ ∗

= −20. We take λ∗
= −τ ∗

=

20 and establish a competitive equilibrium that satisfies (12)–(13)
as

x∗
= (6.429, 21.23, 5.652, 4.688)⊤,

e∗
= (6.571, −7.23, −1.652, 2.313)⊤.

In particular, we compute (x∗

1, e
∗

1) = (6.429, 6.571), (x∗

3, e
∗

3) =

(5.652, −1.652) and (x∗

4, e
∗

4) = (4.688, 2.313) by solving (12),
and obtain (x∗

2, e
∗

2) = (21.23, −7.23) from (13). Again there holds
(x⋆, e⋆) = (x∗, e∗), which validates Theorem 2. □

Example 2. Consider a multi-agent system with four agents. The
utility function for agent i is in the quadratic form fi = −

1
2bix

2
i +

ixi for i = 1, 2, 3, 4. We consider two pairs of system parameters

= (2, 5, 3, 4)⊤ k = (21, 17, 23, 13)⊤; (PM.1)

b′
= (2, 5, 3, 4)⊤ k′

= (25, 22, 24, 14)⊤. (PM.2)

Let the network resource capacity C =
∑4

i=1 ai take values in
an interval (0, 40). We get a discretization of the interval (0, 40)
with a step-size 0.8 that consists of 50 equidistant points for C .
For each C , we compute the optimal prices of the system under
MAS-SALD and MAS-SALTD.

For MAS-SALD, the optimal dual variables λ
∗(PM.1)
SALD and λ

∗(PM.2)
SALD

are computed for 50 times corresponding to each value of C by
solving (3), respectively, under the parameter setting (PM.1) and
(PM.2). For MAS-SALTD, the optimal dual variables τ

∗(PM.1)
SALTD and

τ
∗(PM.2)
SALTD related to the equity constraint (15) are also computed
for 50 times corresponding to each value of C by solving (14)–
(17), respectively, under the parameter setting (PM.1) and (PM.2),
and then we take λ

∗(PM.1)
SALTD = −τ

∗(PM.1)
SALTD and λ

∗(PM.2)
SALTD = −τ

∗(PM.2)
SALTD . In

Fig. 1, we plot the 50 points of optimal prices versus C , to obtain
an approximate trajectory of the optimal price as a function of C .

From Fig. 1 we observe that the optimal price λ∗

SALD in MAS-
SALD can indeed take negative values; while the optimal price
λ∗

SALTD in MAS-SALTD is always non-negative. These observations
are consistent with Propositions 1 and 2. Moreover, for both MAS-
SALD and MAS-SALTD, we observe in Fig. 1 that the optimal prices
λ∗

SALD, λ∗

SALTD are decreasing as the network resource capacity C
increases. □

3. Social shaping for competitive equilibrium

Consistent with classical welfare economics theory, a com-
petitive equilibrium, despite being a social welfare equilibrium
as well, indicates nothing about fairness or sustainability. If the
optimal pricing λ∗ is too high, agents might opt out of the system,
instead of participating in the self-sustained multi-agent system.
When members leave the system, the achievable payoff for the
remaining agents would go down. Therefore, the agents share a
social responsibility in shaping their utility functions so that λ∗ is
within a socially acceptable range.
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Fig. 1. The curves of the optimal prices as functions of the network resource
capacity in Example 2.

3.1. Shaping the competitive equilibrium

Here we present an approach to achieve a socially accept-
ble competitive equilibrium, by synthesizing a class of utility
unctions from which agents can select. We make the following
ssumption.

ssumption 1. Each fi is represented by fi(xi) = −
1
2bix

2
i + kixi,

where bi ∈ R>0 and ki ∈ R≥0. A utility function fi is socially
admissible if there hold ki ∈ [kmin, kmax] and bi ∈ [bmin, bmax].

Let λ† represent the highest pricing for λ∗ that agents can
accept, and we term such a competitive equilibrium λ∗

≤ λ†

socially resilient equilibrium. Let a = (a1 . . . an)⊤ represent
he network resource allocation profile, and let C :=

∑n
i=1 ai

epresent the network resource capacity. Assuming C and a are
iven network characteristics, we consider the following problem
f shaping the competitive equilibrium.
Problem. (Social Competitive Equilibrium Shaping) Consider

he MAS-SALD. Find the range for kmin, kmax, bmin, bmax under
hich there always exists a competitive equilibrium that leads
o λ∗

≤ λ†, for all socially admissible utility functions.

3.2. Socially admissible utility functions

Denote k = (k1, . . . , kn) and b = (b1, . . . , bn)⊤. For two
vectors l = (l1, . . . , ln) and l′ = (l′1, . . . , l

′
n), we write l ⪯ l′ if

there holds li ≤ l′i for all i ∈ V. In other words, ⪯ defines a partial
order for all vectors in Rn.

Define

S∗ :=

{ (
kmin, kmax, bmin, bmax

)
∈ R4

≥0 :

nkmax

bmin
− C ≤

nkmin

bmax  
con1

;
nkmax

bmin
− C ≤

nλ†

bmax

}
  

con2

. (26)

We present the following lemma and theorem.

emma 1. Consider the MAS-SALD. Let Assumption 1 hold. The
optimal load allocation x∗

i , which is an optimal solution of the
optimization problem (1), satisfies

x∗

i =

{ ki−λ∗

bi
if λ∗

≤ ki,
0 if λ∗ > ki,

(27)

r, put more simply, x∗
= max{0, ki−λ∗

}.
i bi

6

Proof. The objective function for each agent i ∈ V in the prob-
lem (1) can be written as

max
xi∈R≥0

−
1
2
bix2i + kixi + λ∗(ai − xi).

ithout xi ∈ R≥0, it is strictly increasing in the interval xi ∈

−∞,
ki−λ∗

bi
], and strictly decreasing in the interval xi ∈

[
ki−λ∗

bi
, ∞]. Since xi takes a non-negative value, the optimal so-

lution to the problem (1) is achieved at x∗

i = 0 when λ∗ > ki;
nd it is achieved at x∗

i =
ki−λ∗

bi
when λ∗

≤ ki. The proof is now
omplete. □

heorem 3. Consider the MAS-SALD. Let Assumption 1 hold. The
following statements hold.

(i) The competitive equilibrium is unique.
(ii) The optimal price λ∗ is monotone increasing under the partial

order over k.
(iii) The competitive equilibrium is always socially resilient (ie

λ∗
≤ λ†) for all socially admissible utility functions as long as

kmin, kmax, bmin, bmax
)
∈ S∗.

roof. (i) According the definition of competitive equilibrium, the
ptimal load allocation profile x∗ must also satisfy the supply–
emand balance constraint (2). Substituting the expression (27)
or x∗

i into the constraint (2), we obtain
n∑

i=1

max{0,
ki − λ∗

bi
} =

n∑
i=1

ai. (28)

It is straightforward to know that the competitive equilibrium is
unique.

(ii) As ki increases, λ∗ must also increase so as to compensate
for the change — ensuring Eq. (28) holds. Otherwise, the left-
hand side of Eq. (28) would increase, while the right-hand side
remains constant, leading to Eq. (28) to not hold. Therefore, λ∗ is
monotone increasing under the partial order over k.

(iii) Without loss of generality, we suppose k1 ≥ · · · ≥ km ≥

λ∗
≥ km+1 ≥ · · · ≥ kn,m ∈ {1, . . . , n − 1}, or k1 ≥ · · · ≥

km ≥ λ∗,m = n. Denote bmmin = min{b1, . . . , bm} ≥ bmin and
bmmax = max{b1, . . . , bm} ≤ bmax.

Let (λ∗, x∗) be a competitive equilibrium. We can write Eq.
(28) as
m∑
i=1

ki − λ∗

bi
+

n∑
i=m+1

0 = C

where C =
∑n

i=1 ai and λ∗
≤ ki, ∀i ≤ m. Then we obtain

∗
=

( m∑
i=1

ki
bi

− C
)
/

( m∑
i=1

1
bi

)
(29)

≤

(mkmax

bmmin
− C

)
/

( m
bmmax

)
(30)

≤

(nkmax

bmin
− C

)
/

( n
bmax

)
(31)

≤ λ† (32)

where kmax = k1. The second inequality from (30) to (31) is
guaranteed by m ≤ n, bmmin ≥ bmin and bmmax ≤ bmax. The third
inequality from (31) to (32) is guaranteed by con2 in the set S∗.

We also know

λ∗
≤

(nkmax

bmin
− C

)
/

( n
bmax

)
≤ k (33)
min
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Fig. 2. Contour maps for the optimal prices in Example 3.

≤ kmmin (34)

≤ ki, ∀i ≤ m (35)

he inequality from (32) to (33) is upon con1 in the set S∗. The
remaining inequalities is guaranteed by k1 ≥ · · · ≥ km ≥ · · · ≥

kn,m ∈ {1, . . . , n − 1}, or k1 ≥ · · · ≥ km ≥,m = n.
Collecting all conditions for (kmin, kmax, bmin, bmax

)
, we obtain

that λ∗
≤ λ† for all socially admissible utility functions with

(kmin, kmax, bmin, bmax
)
∈ S∗. □

Remark 2. In this manuscript, the pricing threshold λ† that can
be socially accepted by all agents is given as a system require-
ment. Agents can find the competitive equilibrium at which the
optimal pricing is below a threshold in a distributed way. Each
agent chooses its parameters based on (26), communicates its
parameters and local resource with other agents, solves a social
welfare equilibrium, and identifies the corresponding Lagrange
multiplier as the optimal pricing λ∗ which is guaranteed to be
socially acceptable by Theorem 3. For more details, we refer
to Salehi, Chen, Petersen, Ratnam, and Shi (2021).

3.3. Numerical examples

Example 3. Consider a MAS-SALD with three agents and network
capacity C = 18. Each agent’s utility function is set as the
quadratic form fi = −

1
2bix

2
i + kixi for i = 1, 2, 3. The system’s

highest pricing for λ∗ that agents can accept socially is assumed
to be λ†

= 39. Take bmin = 4, bmax = 6, kmin = 40, and kmax = 50.
e can verify such a configuration of (bmin, bmax, kmin, kmax) is a

point in S∗ defined in (26).
(i) Let b be fixed to be b = (4, 5, 6)⊤. Take k3 ∈ {44, 48}.

We discretize the space for (k1, k2) ∈ [40, 50]2 and compute the
optimal pricing λ∗ by solving the optimal dual variable of (3).
Then we plot the contour maps for the optimal price as a function
of k1 and k2 in the first row of Fig. 2.

(ii) Let k be fixed to be k = (44, 46, 48)⊤. Take b3 ∈ {4.8, 5.2}.
We discretize the space for (b1, b2) ∈ [4, 6]2 and compute the
optimal pricing λ∗ by solving the optimal dual variable of (3).
Then we plot the contour maps for the optimal price as a function
of b1 and b2 in the second row of Fig. 2.

In Fig. 2 we observe that the maximum value for the price
λ∗ is 20, which is lower than λ†

= 39. This illustrates all
socially admissible utility functions for parameters in the set
S lead to socially acceptable prices, providing a validation for
∗

7

Theorem 3(ii). From the first row of Fig. 2, the optimal price is
monotone under the partial order ⪯ with respect to k, which is
consistent with Theorem 3(iii). □

4. Dynamic multi-agent systems

4.1. MAS with Dynamic Agent Load/Trading Decisions

Here we consider the load balancing problem for dynamical
multi-agent systems.

MAS with Dynamic Agent Load/Trading Decisions (MAS-
DALTD). Each agent i ∈ V is associated with a dynamical state
yi(t) ∈ Rm, described by

i(t + 1) = Aiyi(t) + Biui(t), t ∈ T, (36)

here ui(t) ∈ Rd is the control input, and Ai and Bi are real
matrices with proper dimensions. The time steps are indexed
by T = {0, . . . , T − 1}. Associated with t ∈ T, agent i incurs
a utility function fi(yi(t),ui(t)); the terminal utility for agent i
is Φi(yi(T )). Upon taking the control action ui(t), the required
resource is defined by the function hi(ui(t)). In the context of
thermostatically controlled loads, we may interpret yi and ui as
energy states and temperature setponits of all load units for agent
i, respectively. Each agent can produce an ai(t) units of resource
at time t , and also makes a trading decision ei(t) units of resource
over the network at time t . Similarly,

(i) if hi(ui(t)) < ai(t), then agent i can sell, in which case
ei(t) ≥ 0 and ei(t) ≤ ai(t) − hi(ui(t));

(ii) if hi(ui(t)) ≥ ai(t), then agent i will buy, in which case
ei(t) ≤ 0 and ei(t) = ai(t) − hi(ui(t)).

We denote λ = (λ0 . . . λT−1)⊤ as the pricing vector through the
time horizon, where λt is the unit price for traded energy at
step t . Consequently, the payoff of agent i throughout [0, T ] is
described by
T−1∑
t=0

(
fi(yi(t),ui(t)) + λtei(t)

)
+ Φi(yi(T )).

We denote y(t) = (y1(t)⊤ . . . yn(t)⊤)⊤, u(t) = (u1(t)⊤ . . .

un(t)⊤)⊤, and e(t) = (e1(t)⊤ . . . en(t)⊤)⊤. We further define
Y = (y(0)⊤ . . . y(T )⊤)⊤, U = (u(0)⊤ . . .u(T − 1)⊤)⊤ and E =

e(0)⊤ . . . e(T−1)⊤)⊤. Also introduce Ui = (ui(0)⊤ . . .ui(T−1)⊤)⊤,
i = (ei(0)⊤ . . . ei(T − 1)⊤)⊤ and ai = (ai(0)⊤ . . . ai(T − 1)⊤)⊤.

efinition 5. Let y(0) = y0 ∈ Rmn be given. A triple of
rice-control-trading profiles (λ∗,U∗, E∗) is a dynamic competi-
ive equilibrium if the following conditions hold:

(i) each agent i maximizes its combined payoff under U∗

i and
∗

i :

ax
Ui,Ei

T−1∑
t=0

(
fi(yi(t),ui(t)) + λ∗

t ei(t)
)

+ Φi(yi(T ))

s.t. yi(t + 1) = Aiyi(t) + Biui(t), t ∈ T,

ei(t) ≤ ai(t) − hi(ui(t)), t ∈ T;

(37)

(ii) the total demand and supply are balanced across the
etwork for all time, i.e., there holds
n∑

i=1

ei(t) = 0, t ∈ T. (38)

efinition 6. Let y(0) = y0 ∈ Rmn be given. A pair of control-
rading profiles (U⋆, E⋆) is a dynamic social welfare equilibrium if
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t is a solution to the following optimal control problem:

ax
U,E

n∑
i=1

(T−1∑
t=0

fi(yi(t),ui(t)) + Φi(yi(T ))
)

(39)

s.t. yi(t + 1) = Aiyi(t) + Biui(t), t ∈ T, i ∈ V, (40)

ei(t) ≤ ai(t) − hi(ui(t)), t ∈ T, i ∈ V, (41)
n∑

i=1

ei(t) = 0, t ∈ T. (42)

4.2. Dynamic competitive equilibrium

We impose the following assumption.

Assumption 2. (i) the Φi are concave functions for i ∈ V; (ii) the fi
are concave functions for i ∈ V; (iii) the hi are nonnegative convex
functions for i ∈ V, and hi(z) < b defines a bounded open set of
z in Rd for b > 0; (iv)

∑n
i=1 ai(t) > 0 for all t ∈ T.

We present the following result which establishes a simi-
lar connection between the competitive equilibrium and social
welfare equilibrium under this dynamic setting.

Theorem 4. Consider the MAS-DALTD with y(0) = y0 ∈ Rmn be
given. Let Assumption 2 hold. The dynamic social welfare equilib-
rium(s) and the dynamic competitive equilibrium(s) coincide and the
following statements hold.

(i) If (λ∗,U∗, E∗) is a dynamic competitive equilibrium, then
(U∗, E∗) is a dynamic social welfare equilibrium.

(ii) If (U⋆, E⋆) is a dynamic social welfare equilibrium, then there
exists λ∗

∈ RT such that (λ∗,U⋆, E⋆) is a competitive equilibrium.

Proof. (i) The proof of sufficiency follows from a similar analysis
as in the proof of Theorem 1. The transition from competitive
equilibrium to social welfare equilibrium under this dynamical
setting continues to be a direct consequence of the formulations
of the two underlying optimization problems.

(ii) First of all, the dynamics yi(t + 1) = Aiyi(t) + Biui(t) with
given y(0) ensures that any yi(t) for t = 1, . . . , T is a linear
combination of y(0) and ui(0), . . . ,ui(t − 1). Therefore, we can
always write for any i ∈ V that

yi(t) = pi,ty0 + qi,tUi, t = 0, . . . , T (43)

with pi,t and qi,t being matrices with proper dimensions. As a
result, we have

fi(yi(t),ui(t)) = fi(pty0 + qtUi,ui(t)) := f̃i,t (Ui). (44)

In view of Assumption 2, and the fact that the composition of a
concave function and an affine function continues to be concave,
we conclude that gi,t (·) is a concave function. Similarly,

Φ(yi(t)) = Φ(pi,Ty0 + qi,TUi) := Φi(Ui)

where Φi(·) is a concave function.
The optimization problem (39)–(42) can be equivalently

rewritten as the following convex programming problem:

min
U,E

−

n∑
i=1

(T−1∑
t=0

f̃i,t (Ui) + Φi(Ui)
)

s.t. hi(ui(t)) + ei(t) ≤ ai(t), t = 0, . . . , T − 1, i ∈ V
n∑

ei(t) = 0, t = 0, . . . , T − 1.

(45)
i=1 d

8

Similarly, (37) can be equivalently written as the following con-
vex programme

min
Ui,Ei

−

T−1∑
t=0

(
f̃i,t (Ui) + λ∗

t ei(t)
)

+ Φi(Ui)

s.t. ei(t) ≤ ai(t) − hi(ui(t)), t = 0, . . . , T − 1.

(46)

Next, with Assumption 2.(iii)–(iv), we can verify that Slater’s
ondition holds for (45) and (46), which guarantees strong duality
n both problems (Boyd et al., 2004). Also, noting
n

i=1

hi(ui(t)) ≤

n∑
i=1

ai(t) (47)

nd the assumption that hi(z) < b defines a bounded open set of
in Rm for b > 0, ui(t) takes values in a compact set for all i and
. Moreover, since hi(ui(t)) ≥ 0 holds for all i and for all t , there
olds ei(t) ≤ ai(t). The constraint

∑n
i=1 ei(t) = 0 further ensures

i(t) ≥ −
∑n

i=1 ai(t) for all i and t . Thus ei(t) also takes values in
compact set for all i and t . The convex programming problem

45) leads to finite primal solution.
The Lagrange dual function of (45) can be written as

(U, E, λ, µ) = −

n∑
i=1

(T−1∑
t=0

f̃i,t (Ui) + Φi(Ui)
)

+

T−1∑
t=0

n∑
i=1

λtei(t)

+

T−1∑
t=0

n∑
i=1

µi,t
(
hi(ui(t)) + ei(t) − ai(t)

)
=

n∑
i=1

Li(Ui, Ei, λ, µi) (48)

here

i(Ui, Ei, λ, µi) = −

T−1∑
t=0

f̃i,t (Ui) + Φi(Ui) +

T−1∑
t=0

λtei(t)

+

T−1∑
t=0

µi,t
(
hi(ui(t)) + ei(t) − ai(t)

)
. (49)

ere µi,t ≥ 0 since they correspond to the inequality constraints.
e have used the conventional notation µi = (µi,0, . . . , µi,T−1)⊤

nd µ = (µ⊤

1 , . . . ,µ⊤
n )

⊤.
Finally, letting an optimal dual solution of (45) be (λ∗, µ∗),

here holds from strong duality

U⋆, E⋆) ∈ argmin L(U, E, λ∗, µ∗) (50)

f (U⋆, E⋆) is a dynamic social welfare equilibrium. This implies
rom (48) that

U⋆
i , E

⋆
i ) ∈ argmin Li(U, E, λ∗, µ∗). (51)

ow, µ∗ is obtained by solving

ax
λ,µ

min
U,E

L(U, E, λ, µ) = max
λ,µ

min
U,E

n∑
i=1

Li(Ui, Ei, λ, µi) (52)

here the maximization and minimization are taken in their
espective domains for λ, µ,U, E. As a result, there must hold
∗

i ∈ argmax
µi

min
Ui,Ei

Li(Ui, Ei, λ
∗, µi). (53)

t is worth emphasizing that Li(Ui, Ei, λ
∗, µi) is, precisely, the

agrangian of (46). Therefore, (53) ensures that µ∗

i is an optimal

ual solution of (46), and then from strong duality (51) ensures
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Fig. 3. The dynamic optimal price vs. time steps in Example 4.

that (U⋆, E⋆) is an optimal primal solution of (46). In other words,
we have proven (λ∗,U⋆, E⋆) is a competitive equilibrium.

The proof of the theorem is now complete. □

Example 4. Let the time horizon be T = 30. Consider a MAS-
DALTD with three agents which have initial states

y1(0) =

[
1
4

]
, y2(0) =

[
2
5

]
, y3(0) =

[
3
3

]
,

and local resource

a1 = a2 = [50 · · · 50]30×1, a3 = [30 · · · 30]30×1.

The dynamical state yi(t) ∈ R2 of agent i is described by

yi(t + 1) = Aiyi(t) + Biui(t), t ∈ T,

where

A1 =

[
−3
5 0
0 −7

10

]
,A2 =

[
−1
2 0
0 −1

5

]
,A3 =

[
−2
5 0
0 −4

5

]
,

1 =

[
2 0
0 7

]
,B2 =

[
4 0
0 6

]
,B3 =

[
9 0
0 3

]
.

he utility function of agent i is in the quadratic form

i = y⊤

i (t)Riyi(t) + Wiyi(t) + u⊤

i (t)Qiui(t) + Kiui(t),

here

1 =

[
−5 0
0 −8

]
,R2 =

[
−3 0
0 −7

]
,R3 =

[
−2 0
0 −1

]
,

1 =

[
−5 0
0 −4

]
,Q2 =

[
−1 0
0 −6

]
,Q3 =

[
−3 0
0 −2

]
,

1 =
[
200 300

]
,W2 =

[
200 400

]
,W3 =

[
450 300

]
,

K1 =
[
50 60

]
,K2 =

[
50 20

]
,K3 =

[
80 20

]
.

The terminal utility of agent i is also set as the quadratic form
Φi(yi(T )) = y⊤

i (T )Riyi(T )+Wiyi(T ). Upon taking ui(t), the required
resource is determined by hi(ui(t)) = u⊤

i (t)Hiui(t), where

H1 =

[
5 0
0 8

]
,H2 =

[
3 0
0 7

]
,H3 =

[
2 0
0 1

]
.

We compute the dynamic social welfare equilibrium (U⋆, E⋆)
by solving the optimization problem (39)–(42) and the optimal
dual variables −λ∗ corresponding to (42). Given λ∗, we further
compute the dynamic competitive equilibrium (U∗, E∗) by solving
(37). In Fig. 4, we plot the dynamic social welfare equilibrium and
9

Fig. 4. The dynamic social welfare equilibrium and competitive equilibrium in
Example 4.

the dynamic competitive equilibrium. In Fig. 4 we observe that
the dynamic social welfare equilibrium and the dynamic compet-
itive equilibrium agree, which is consistent with Theorem 4. The
dynamic optimal price for traded resource versus time steps is
also shown in Fig. 3, where the price experiences oscillations both
at the beginning and in the end of the time horizon, and holds
a steady value in between. Turnpike properties are observed in
this example that the optimal solution settled in a long time
horizon approximately consists three pieces: the first and the
last being transient short-time trajectory and the middle being
a long-time trajectories staying close to the optimal steady-state
solution of an associated static optimal control problem (Grüne
et al., 2017). □

4.3. Recursive computation of social welfare equilibrium

One of the most widely used methods in optimal control
problems is dynamic programming (Bertsekas, 2003). Here we
investigate the possibility of using a dynamic programming ap-
proach to represent and compute the social welfare equilibriums
described in (39)–(42) as optimal feedback decisions.

Denote

Et := {e(t) :

n∑
i=1

ei(t) = 0; ei(t) ≤ ai(t), ∀i ∈ V } (54)

nd

t := {u(t) : ei(t) ≤ ai(t) − hi(ui(t)), ∀i ∈ V }. (55)

lso define ft (y(t),u(t)) = −
∑n

i=1 fi(yi(t),ui(t)) and Φ(y(T )) =∑n
Φ (y (T )).
i=1 i i
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efinition 7. Consider the MAS-DALTD with y(0) = y0. Let
y(t) ∈ Yt ,u(t) ∈ Ut , and e(t) ∈ Et . We say that (u(t), e(t))
follows the feedback policy π = (π0, . . . ,πT−1) if there holds
u(t), e(t)) = πt (y(t)), for all t ∈ T.

Further introduce the cost-to-go function associated with any
feedback policy π by

Vπ(k, yk) :=

T−1∑
t=k

ft (y(t),u(t)) + Φ(yT ) (56)

with (u(t), e(t)) = πt (y(t)), for all t = k, . . . , T −1, y(k) = yk, and

y(s + 1) = Ay(s) + Bu(s), s = k, . . . , T − 1. (57)

Here A and B are block diagonal matrices

diag(A0, . . . ,An) and diag(B0, . . . ,Bn)

respectively.
It is clear that the cost-to-go function must satisfy the bound-

ary condition that

Vπ(T , y(T )) = Φ(yT ). (58)

Theorem 5. Consider the MAS-DALTD with y(0) = y0. Let (U⋆, E⋆)
be a dynamic social welfare equilibrium from (39)–(42). Then there
exists π⋆ such that (u⋆(t), e⋆(t)) = π⋆

t (y(t)), for all t ∈ T, and the
cost-to-go function Vπ⋆

satisfies the following recurrance equation

Vπ⋆
(k, yk)

= min
u(k)∈Uk;

e(k)∈Ek

[
fk(y(k),u(k)) + Vπ⋆

(k + 1, yk+1)
]
. (59)

Proof. First of all, the optimization problem (39)–(42) can be
rewritten as:

min
U,E

T−1∑
t=0

ft (y(t),u(t)) + Φ(yT ) (60)

s.t. y(t + 1) = Ay(t) + Bu(t), t ∈ T (61)

e(t) ∈ Et , t ∈ T (62)

u(t) ∈ Ut , t ∈ T. (63)

Given the form of cost-to-go function (56) and the boundary
condition of the terminal cost (58), we next have

Vπ(T − 1, yT−1) = fT−1(yT−1,u(T − 1)) + Vπ(T , yT ) (64)

where Vπ(T − 1, yT−1) is a one-step process with initial state
yT−1. The value of Vπ(T − 1, yT−1) depends only on yT−1 and
u(T − 1), since yT is related to yT−1 and u(T − 1) through the
system dynamics (61). The optimal cost is then

Vπ⋆
(T − 1, yT−1)

≜ min
u(T−1)∈UT−1;

e(T−1)∈ET−1

[
fT−1(yT−1,u(T − 1)) + Vπ(T , yT )

]
. (65)

where the optimal choice of (u(T − 1), e(T − 1)) only depends on
yT−1. The cost over the last two intervals is given by

Vπ(T − 2, yT−2)

= f (y ,u(T − 2)) + Vπ(T − 1, y ) (66)
T−2 T−2 T−1

10
where Vπ(T−2, yT−2) is a two-step process with initial state yT−2.
The optimal policy during these two steps is found from

Vπ⋆
(T − 2, yT−2) ≜ min

u(T−2)∈UT−2;

e(T−2)∈ET−2

[
Vπ(T − 1, yT−1)

+ fT−2(yT−2,u(T − 2))
]
. (67)

The optimality principle states that for this two-step process,
hatever the initial state yT−2, initial control action and trading
ecision (u(T − 2), e(T − 2)), the remaining (u(T − 1), e(T − 1))
ust be optimal with respect to yT−1 resulted by applying (u(T −

), e(T − 2)) to the system; that is,

π⋆
(T − 2, yT−2) ≜ min

u(T−2)∈UT−2;

e(T−2)∈ET−2

[
Vπ⋆

(T − 1, yT−1)

+ fT−2(yT−2,u(T − 2))
]
. (68)

Applying the same analysis recursively, we obtain

π⋆
(k, yk) = min

u(k)∈Uk;

e(k)∈Ek

[
fk(yk,u(k)) + Vπ⋆

(k + 1, yk+1)
]
. (69)

Now let (U⋆, E⋆) be a dynamic social welfare equilibrium.
he value of y(t + 1) only depends on the current state y(t)
nd the current input u(t), but not on the historical states and
nputs before t . Therefore, the open-loop optimal solution (U⋆, E⋆)
f (39)–(42) coincides with the feedback optimal policies π⋆. The
roof of the theorem is now complete. □

.4. Social smoothing via receding horizon pricing

From Example 4, it is evident that dynamic multi-agent sys-
ems operating under competitive equilibriums for a fixed hori-
on may encounter significant pricing oscillations, especially at
he beginning and towards the end of the time period. In practice,
his means users are experiencing market shocks, which is not
esirable from a social point of view. Therefore, for dynamic
ulti-agent systems, socially resilient competitive equilibriums
hould have pricing trajectories that are as smooth as possible. In
ddition, computing the dynamic competitive equilibriums over
long period of time is also a challenging task, and may even be

nfeasible for large-scale multi-agent systems.
The receding-horizon approach (Mayne, 2014; Qin & Badgwell,

003) is a proven method for delivering robust and computation-
lly efficient controllers for dynamical systems, with successful
pplications in a wide range of areas ranging from emergency ve-
icle scheduling (Goodwin & Medioli, 2013) to dynamic hedging
f options (Bemporad, Bellucci, & Gabbriellini, 2014). The control
nput trajectories derived from a receding-horizon approach may
ven be good approximations of the optimal control solution
nder suitable conditions (Grüne, 2016). With this view, we next
ropose a receding horizon pricing procedure for the considered
ynamic multi-agent systems.
Consider the MAS-DALTD with y(0) = y0. We fix a prediction

orizon N and denote K = {0, 1, . . . ,N − 1}. The receding
orizon approach approximates the solution to the optimization
roblem of (39)–(42) as follows. Assume a full measurement of
he estimate of the state yi(t), i ∈ V, is available at each time step
, t ∈ T. We then propose a new optimization problem over the
orizon [t, t + N] at each time step t, t ∈ T:

min
Ut→t+N|t
Et→t+N|t

Φ(yt+N|t ) +

N−1∑
k=0

fk(yt+k|t ,ut+k|t ) (70)

s.t. y = A y + B u , k ∈ K; i ∈ V, (71)
i,t+k+1|t i i,t+k|t i i,t+k|t
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Fig. 5. The dynamic optimal pricing vs. the receding horizon pricing in Example 5.
ei,t+k|t ≤ ai,t+k|t − hi(ui,t+k|t ), k ∈ K; i ∈ V, (72)
n∑

i=1

ei,t+k|t = 0, k ∈ K, (73)

here Ut→t+N|t = {ut|t , . . . ,ut+N−1|t}, Et→t+N|t = {et|t , . . . ,
et+N−1|t}. Here yi,t+k|t is the state of agent i at time step t + k
predicted at time step t . Similarly, ui,t+k|t and ei,t+k|t are the
control action and trading decision of agent i at time step t + k
predicted at time step t obtained by starting from the current
state yi,t|t = yi(t) and applying to (71).

Let U∗

t→t+N|t = {u∗

t|t , . . . ,u
∗

t+N−1|t}, E∗

t→t+N|t = {e∗

t|t , . . . ,

e∗

t+N−1|t} be the optimal solution of (70)–(73) and λ∗

t→t+N|t =

{λ∗

t|t , . . . , λ
∗

t+N−1|t} be the optimal dual variables for constraints
(73). The first element of U∗

t→t+N|t , E
∗

t→t+N|t and λ∗

t→t+N|t is ap-
plied to the MAS-DALTD at time step t:

u(t) = u∗

t|t (y(t)), (74)

e(t) = e∗

t|t (y(t)), (75)

λ(t) = λ∗

t|t (y(t)). (76)

Based on the new state yi,t+1|t+1 = yi(t + 1), i ∈ V, the
optimization problem (70)–(73) is solved repeatedly at time step
t + 1 and it yields a receding horizon control and pricing. The
procedure of receding horizon control and pricing is summarized
in Algorithm 1:

Algorithm 1 Receding horizon control and pricing

while t < T do
measure the state y(t) at time step t;
obtain U∗

t→t+N|t , E
∗

t→t+N|t , λ
∗

t→t+N|t by solving (70)–(73);
apply the first element u∗

t|t ,e
∗

t|t , λ
∗

t|t to MAS-DALTD;

Note that Algorithm 1 still applies, even if the new optimiza-
ion problem proposed in a receding horizon fashion over the
orizon [t, t + N] exceeds the entire time horizon [0, T ] when

t ≥ T − N .
11
Example 5. Consider a MAS-DALTD with the same setting in
Example 4. Let the entire time horizon take the value of 200. We
fix a prediction horizon as N = 40. First, we follow the procedure
in Example 4 and compute the dynamic optimal pricing over the
entire time horizon. Then we apply Algorithm 1 to obtain the
receding horizon pricing. The resulting trajectories of the two
pricing approaches are shown in Fig. 5.

From Fig. 5, it is clear that the dynamic optimal pricing and
receding horizon pricing coincide over most of the time horizon,
which shows that receding horizon pricing is a good approxima-
tion of the optimal pricing planned for the entire time horizon.
We also note that the receding horizon pricing does not expe-
rience the large oscillations found in dynamic optimal pricing
during the end periods of the time horizon. □

5. Conclusions

In this paper, we studied multi-agent systems with decen-
tralized resource allocation without external resource supply. For
multi-agent systems with static local allocation, we showed that
under general concavity assumptions, the competitive equilib-
rium and the social welfare. Equilibrium exist and agree using
a duality analysis. A major contribution of this paper is our
formulation of a new social shaping problem for competitive
equilibrium, where the optimal pricing is associated with an
upper bound. We presented an explicit family of socially ad-
missible utility functions under which the optimal pricing at a
competitive equilibrium is always socially acceptable. Another
important aspect of this paper is our study of dynamical multi-
agent systems and we have generalized it in an optimal control
context. We proved that the dynamic competitive equilibrium
and social welfare equilibrium continue to exist and coincide with
each other. In light of the dynamic programming concept, we also
provided a recursive method of expressing and computing com-
petitive equilibrium. We suggested a receding horizon strategy
for smoothing dynamic pricing in order to shape it in the sense
that the pricing trend will be stationary. Future work to construct
a range of socially admissible utility functions in a generic way
is possible. Future work to shape the optimal prices under the
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