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Abstract— In this paper, we study network games where
players are involved in information aggregation processes sub-
ject to the differential privacy requirement for players’ payoff
functions. We propose a Laplace linear-quadratic functional
perturbation (LLQFP) mechanism, which perturbs players’
payoff functions with linear-quadratic functions whose coeffi-
cients are produced from truncated Laplace distributions. For
monotone games, we show that the LLQFP mechanism main-
tains the concavity property of the perturbed payoff functions,
and produces a perturbed NE whose distance from the original
NE is bounded and adjustable by Laplace parameter tuning.
We focus on linear-quadratic games, which is a fundamental
type of network games with players’ payoffs being linear-
quadratic functions, and derive explicit conditions on how the
LLQFP mechanism ensures differential privacy with a given
privacy budget. Lastly, numerical examples are provided for
the verification of the advantages of the LLQFP mechanism.

I. INTRODUCTION

Games on networks has gained increased traction in recent
years. It has been applied in a variety of fields such as
online E-commerce in social networks [1], route planning
in transportation networks [2], and resource allocations in
wireless communication networks [3]. There are typically
three information aggregation processes in games for players
to achieve network-level goals: the distributed Nash equilib-
rium (NE) seeking [4]–[6], best-response dynamics [7]–[9],
and no-regret learning [10]–[13].

What these frameworks have in common is that players
need to share information with others in a dynamic process,
such as their actions, payoff gradients, or payoffs, and
then choose their actions for the next stage based on the
information received and their own payoff functions. Clearly,
players’ payoff functions are encoded in the shared informa-
tion. However, players’ payoff functions are often sensitive
and private [14]. As a result, players’ payoff functions are
at risk of privacy leakage. Owing to differential privacy
[15], [16], it is possible for players to share information
and decide their actions over time to achieve the desired
outcome while keeping their payoff functions from being
compromised. Differentially private systems have been well
studied in the sense that lots of privacy algorithms are
designed for various tasks such as average consensus [17],
[18], estimation and filtering [19], and convex optimization
[20]–[22]. As for differentially private games, the works of
[23], [24] have focused on privacy-preserving distributed
Nash seeking strategy design for aggregated games.
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Problem of Interest In this paper, we consider a net-
work game where players are interconnected through an
interaction/communication network. Players are involved in
information aggregation processes that requires them to share
information to accomplish certain collective goal. The shared
information that encodes the sensitive information of payoff
functions is monitored by adversaries. As a result, we aim to
protect the differential privacy of players’ payoff functions.

We are inspired by [22], [25]. We propose a Laplace
linear-quadratic functional perturbation (LLQFP) mecha-
nism, which perturbs players’ original payoff functions with
linear-quadratic functional perturbation. The coefficients of
those perturbation are generated by truncated Laplace dis-
tributions. The idea is to let players participate in certain
information aggregation process using the perturbed payoff
functions. If the LLQFP mechanism preserves differential
privacy, then it also enforces differential privacy of in-
formation aggregation processes by the resilience to post-
processing of differential privacy [16].

In the literature of differentially private information ag-
gregation processes, a common approach is to add noises to
players’ shared information [20], [21], [23], [24], [26]. For
this approach, perturbation has to be designed in accordance
with a diverse set of objectives during information aggre-
gation processes. Moreover, perturbation has to be added at
all time steps, and therefore the longer the operating time
of information aggregation processes is, the more amount
of perturbation is required to add. Functional perturbation
is easier to implement since its design does not depend on
specific tasks. In addition, functional perturbation only adds
perturbation once to produce the perturbed payoff functions,
regardless of the number of steps players participate in the
following information aggregation processes.

Functional perturbation was also proposed by [22], [25].
They studied the distributed optimization problem subject to
the requirement of differential privacy. Their work decom-
posed the objective functions into an infinite sequence of
coefficients corresponding to the elements of a orthogonal
basis in a separable Hilbert space, and added noises to
the infinite coefficient sequence. Unfortunately, truncation is
inevitable in practical implementations. Our work focuses
on generalizing functional perturbation to the differentially
private game setting. Instead of considering infinite expan-
sion, we propose a mechanism that does not involve the
decomposition of function space, but directly apply linear-
quadratic functions as perturbation avoiding the truncation
problem.

Contributions In this paper, we study network games



under the differential privacy requirement for players’ payoff
functions. We make the following contributions:
• We extend the notion of differential privacy to the

network game setting, and propose a Laplace linear-
quadratic functional perturbation (LLQFP) algorithm,
which perturbs players’ original payoff functions with
linear-quadratic functional perturbation whose coeffi-
cients are generated according to truncated Laplace
distributions.

• For monotone games, we show that the LLQFP algo-
rithm maintains the concavity property of the perturbed
payoff functions and yields a γ-accurate perturbed NE
whose distance from the original NE is upper bounded
by any prescribed constant γ.

• We investigate LQ games that players’ payoff func-
tions are parameterized. It serves as a tutorial example
showing how Laplace parameters are selected to ensure
certain differential privacy requirement.

• Experiments are conducted to verify the advantages of
the LLQFP algorithm.

Organization The remainder of the paper is organized as
follows. For privacy concerns about players’ payoff functions
in network games, we formalize our problem in Section II. In
Section III, we propose the LLQFP algorithm. In Section IV,
we consider monotone games, and show the advantages
of the LLQFP algorithm. In Section V, we consider LQ
games, and investigate Laplace parameter conditions that can
guarantee certain different privacy requirement. Numerical
examples are presented in Section VI. This paper ends with
concluding remarks in Section VII.

II. PROBLEM FORMULATION

A. Network Games

Consider a network game with n players. The players are
interconnected through an interaction/communication net-
work. The interaction/communication network is associated
with a graph G(V,E), where V := {1, 2, . . . , n} represents
the nodes (players), and E defines the links (the interde-
pendency among players). Each player i ∈ V holds an
action xi from a compact convex action space Ai ⊆ R.
The aggregated action profile of all players and the action
profile excluding player i are denoted by x := [x1, . . . , xn]>

and x−i = [x1, . . . , xi−1, xi+1, . . . , xn]>, respectively. Each
player i then receives her payoffs determined by a payoff
function, i.e., ui = fi(xi,x−i), where the payoff function
fi ∈ C2(A) is twice continuously differentiable over A :=
Πi∈VAi.

A common solution concept in game theory is called
Nash equilibrium. It depicts an action profile under which
no player may gain by simply modifying her action while
others maintain theirs unaltered. We denote the NE by x∗ :=
[x∗1, . . . , x

∗
n]>.

Definition 1 (Nash equilibrium). An action profile x∗ is
said to be a pure-strategy NE of a game if fi(x∗i ,x

∗
−i) ≥

fi(xi,x
∗
−i),∀xi ∈ Ai,∀i ∈ V.

Information Aggregation Processes In network games,
there are many network-level information aggregation op-
erations that require players to share dynamical states over
a horizon t ∈ {0, 1, . . . , T} to accomplish collective goals
such as the distributed Nash seeking [4]–[6], best-response
dynamics [7]–[9], and no-regret learning [10]–[13].

Example 1 (Distributed Nash seeking [4]–[6]) At time t,
each player i holds a dynamical state yi(t) that typically
consists of her action and her estimate of other players’
actions. Then, each player i shares yi(t) with other players
via certain interaction/communication network. Next, each
player i updates her dynamical state for yi(t+ 1) based on
the received players’ dynamical states and her own payoff
function fi. The network-level objective is for (perhaps part
of) the sequence [y1(t); . . . ;yn(t)], t = 0, 1, . . . to converge
to a NE.

Example 2 (Best-response Dynamics [7]–[9]) At time t, each
player i holds a dynamical state yi(t) that represents her
action. Then, each yi(t) is observed by or communicated
with other players. Next, each player i updates her state
yi(t + 1) as the action that maximizes her payoff function
given other players’ current actions. Best-response dynamics
is a behavioral model depicting how players strategically
make decisions in a sequential manner. Sometimes, best-
response dynamics converge to a NE.

Example 3 (No-regret Learning [10]–[13]) At time t, each
player i holds a dynamical state yi(t) that typically consists
of her action and her estimate of other players’ payoff
gradients. Then, each player i shares yi(t) with other players
via certain interaction/communication network. Next, each
player i updates her dynamical state upon the received
players’ dynamical states and her own payoff function fi.
The network-level objective of no-regret learning is for the
sequence yi(t), t = 0, 1, . . . to minimize the regret of player
i as the cumulative loss compared with a plain/single action
in hindsight.

B. Problem Definition

Differentially Private Information Aggregation Processes
From the above network-level information aggregation oper-
ations, it is clear that the yi(t), i = 1, . . . , n, t = 0, 1, . . . , T
encode the information of payoff functions. Those states
yi(t) are shared by player i with other players. However,
players’ payoff functions are often private and contains
sensitive information [14]. As a result, payoff functions face
privacy risk in the information aggregation processes.

Differential privacy has been a standard tool to pro-
tect an individual’s data privacy in a system where ag-
gregate information is publicly published, but individ-
ual information is privately withheld [16]. Specifically, to
protect the differential privacy of players’ payoff func-
tions, the mapping from f := [f1; . . . ; fn] to Y :=
[y1(0); . . . ;y1(T ); . . . ;yn(0); . . . ;yn(T )] should satisfy the
following differential privacy condition.



Definition 2 (W-adjacency [25]). Given any normed vector
space (W, || · ||W), f and f

′
are said be W-adjacent if there

exists i0 ∈ V such that

fi = f
′

i , i 6= i0; (1a)

fi0 − f
′

i0 ∈W. (1b)

The normed vector space W is a design choice that we
specify later according to the class of payoff functions.

Definition 3 ((ε, δ)-differential privacy). The mapping M is
said to preserve (ε, δ)-differential privacy if for any subset
M ⊆ range

(
M
)
,

P(M(f) ∈M ) ≤ eεP(M(f ′) ∈M ) + δ, (2)

holds for any two W-adjacent payoff functions f and f ′.

C. Functional Perturbation

We propose a functional perturbation mechanism from f
to f̂ where certain perturbation is added to produce f̂ , and
then players use f̂ to participate in information aggregation
processes. As a result, the privacy of players’ payoff func-
tions f may be protected in the sense that Definition 3 may
be satisfied. If the mapping from f to f̂ preserves differential
privacy, then differential privacy of the mapping from f to
Y is also enforced by the immune to post-processing [16].

There are a few practical challenges in designing such a
mechanism:

• Differential privacy of the functional perturbation mech-
anism from f to f̂ should be provable.

• The basic regularity property of the game should be
maintained. In particular, if f are concave, f̂ should be
also concave.

• The distance between the NE of the original game and
the NE of the perturbed game should be upper bounded
and adjustable by parameter tuning.

In this paper, we aim to develop a distributed algorithm
to realize this functional perturbation mechanism that can
address the above challenges.

III. THE PROPOSED ALGORITHM

The truncated Laplace distribution truncated by [−a, a]
with mean zero and scale parameter λ, denoted Ltr(a, λ),
has probability density function

p(x; a, λ) =

{
Be−|x|/λ, for x ∈ [−a, a],
0 , otherwise,

(3)

where B = 1
2λ(1−e−a/λ) .

Denote the neighbors of player i by the set Ni ⊂ V. We
sort the indices of player i’s neighbors in ascending order in
the set Oi := {i1, i2, . . . , i|Ni|}. For example, if player j is
player i’s kth neighbor, then ik = j.

Algorithm 1 Laplace Linear-quadratic Functional Perturba-
tion Algorithm

Input: Laplace parameters a, λ; payoff functions f1, . . . , fn;
Output: perturbed payoff functions f̂1, . . . , f̂n

1: Each player i ∈ V independently generates a sequence
random numbers ωi,k, k = 1, . . . , |Ni|+ 2, according to
Ltr(a, λ) in (3).

2: Each player i ∈ V computes

qij =


ωi,(|Ni|+1)

2 + a(|Ni|+1)
2 , j = i,

ωi,k, j = ik,
0, otherwise,

(4a)

βi = ωi,(|Ni|+2). (4b)

3: Each player i ∈ V employs a perturbed payoff function
based on qi := [qi1, . . . , qin]> and βi:

f̂i(xi,x−i) = fi(xi,x−i)− xiq>i x− βixi. (5)

4: return f̂1, . . . , f̂n

A. LLQFP Algorithm

We next propose a Laplace linear-quadratic functional
perturbation Algorithm in Algorithm 1.

Algorithm 1 perturbs the original payoff functions with
linear-quadratic functional perturbation whose coefficients
are generated according to (3). Each player i first generates
|Ni| + 2 independent truncated Laplace noises, and then
strategically inserts noises to her payoff function in a linear-
quadratic perturbation form. Each qi in the perturbed payoff
function is not a simple stack of |Ni|+ 1 truncated Laplace
noises, but depends on the network structure and the trun-
cated bound a.

The work of [22], [25] also presented an analysis on the
the mechanism of functional perturbation via Laplace noises
under the problem setting of differentially private distributed
convex optimization. The differences between theirs and ours
are as follows:

• Their work was based on the assumption that the
objective functions are twice continuously differentiable
functions with bounded gradients and Hessians. But we
are going to assume that the underlying game is a mono-
tone game, which is common in the game literature [27].
As a result, investigating whether the basic properties of
the game is maintained and characterizing the accuracy
of NE after applying Algorithm 1 are different form
their framework.

• Their work decomposed f into its coefficients by the
infinite expansion, and perturbed this infinite sequence
by adding noise to all of its elements. As a result,
truncation is inevitable in practical implementations.
But we only consider linear-quadratic functional per-
turbation where the noise coefficients are related with
the underlying interaction graph of the game. In a sense,



the network structure of the game may be maintained.

B. Positivity Guarantee

We now present a property of the coefficients generated
according to Ltr(a, λ), which is necessary for the Theorems
later.

Denote di = [qi1, . . . , qi(i−1), 2qii, qi(i+1), . . . , qin]> and
D = [d1 d2 . . . dn]. Also denote β = [β1, . . . , βn]>.

Lemma 1. D> is a positive semidefinite matrix.

Proof. We focus on the magnitude of the diagonal element
in each row, and the sum of the magnitudes of all non-
diagonal elements in that row. According to (4a), we have
|2qii| ∈ [a|Ni|, a(|Ni|+ 2)] and

∑
i 6=j |qij | ∈ [0, a|Ni|],∀i ∈

V. Since |2qii| ≥
∑
i 6=j |qij |, D> is diagonally dominant. A

symmetric diagonally dominant real matrix with nonnegative
diagonal entries is positive semidefinite. Hence, D> is a
positive semidefinite matrix. �

IV. MONOTONE GAMES

In what follows, we look at a class of strongly monotone
games, present its basic properties, and show the advantages
of Algorithm 1.

For each i ∈ V, we denote the gradient of fi with
respect to xi by ∇xifi := ∂fi

∂xi
∈ R, and φ(x) :=

[∇x1
f1, . . . ,∇xnfn]> ∈ Rn.

We impose the following assumption of a class of strongly
monotone games.

Assumption 1 ([23]). For some lm > 0 and for all x′,x ∈
A, ∑

i∈V
(φi(x)− φi(x′))(xi − x′i) ≤ −lm‖x− x′‖2. (6)

Assumption 1 implies that each player’s original payoff
function f is strictly concave in xi [27]. We introduce the
definition of concavity preservation.

Definition 4 (Concavity preservation [25]). Let Assumption 1
hold. Algorithm 1 is said to be concavity-preserving if each
f̂i is strictly concave in xi for all i ∈ V.

A. Concavity Preservation

The following result proves that under Assumption 1,
Algorithm 1 is concavity-preserving.

Theorem 1. Let Assumption 1 hold. Then, Algorithm 1 is
concavity-preserving.

Proof. Under Assumption 1, each player i’s original pay-
off function is strictly concave in xi. We consider x =
[x1, . . . , xi, . . . , xn]> and x′ = [x1, . . . , x

′
i, . . . , xn]> and

obtain (φi(x)− φi(x′))(xi − x′i) < 0.
We then check the sign of (φ̂i(x) − φ̂i(x′))(xi − x′i) =

(φi(x) − φi(x
′))(xi − x′i) − 2qii(xi − x′i)

2 < 0, which
complies with Definition 4. �

The next result shows that under Assumption 1, both
original game and perturbed game after Algorithm 1 admit
a unique NE.

Theorem 2. Let Assumption 1 hold. Then,
(i) the original game with the payoff functions f admits a

unique NE.
(ii) after Algorithm 1, the perturbed game with the per-

turbed payoff functions f̂ admits a unique NE.

Proof. For (i), the class of strongly monotone games is a
proper subclass of monotone games, first introduced in [27].
Instead of the stronger requirement in Assumption 1, the
weaker assumption

∑
i∈V ci(φi(x) − φi(x′))(xi − x′i) < 0

is imposed. Every monotone game admits a unique NE [27,
Theorem 2]. Therefore, the original game under Assump-
tion 1 also admits a unique NE.

For (ii), we are going to check whether the perturbed game
is a monotone game by investigating whether the sign of∑
i∈V(φ̂i(x)− φ̂i(x′))(xi − x′i) < 0,∀x′,x ∈ A,x′ 6= x. It

is straightforward that∑
i∈V

(φ̂i(x)− φ̂i(x′))(xi − x′i)

=
∑
i∈V

(φi(x)− φi(x′))(xi − x′i)−
∑
i∈V

2qii(xi − x′i)2 < 0.

We draw the conclusion that the perturbed game is a mono-
tone game, therefore admitting a unique NE. �

B. γ-accurate Nash equilibrium

According to Theorem 2, when Assumption 1 holds, both
original game and perturbed game admit a unique NE. We
denote the original NE of the original game by x∗ and the
perturbed NE of the perturbed game by x̂∗.

We now introduce the definition of γ-accurate NE.

Definition 5 (γ-accurate NE). Let Assumption 1 hold. The
perturbed NE x̂∗ is said to be γ-accurate if ‖x∗− x̂∗‖ ≤ γ.

In the following result, we derive an upper bound for the
distance between the original NE and the perturbed NE after
Algorithm 1.

Theorem 3. Let Assumption 1 hold. Further suppose that
the original NE and perturbed NE are both interior points
in the action space A. Then, the perturbed NE is γ-accurate
with

γ =

√
na+

√∑
i∈V(4|N|2i + 5|Ni|+ 4)a‖x∗‖

lm
(7)

Proof. By taking the derivative of (5) w.r.t. xi and rewriting
it in the vector form, we obtain

φ̂(x) = φ(x)−D>x− β. (8)

We now turn to the original NE and perturbed NE, whose
existence and uniqueness are guaranteed by Theorem 2.
Moreover, in Theorem 3, we further impose the assumption
of interior NE. Substituting x̂∗ into Eq. (8), we have φ(x̂∗) =
φ̂(x̂∗)+D>x̂∗+β. The first-order condition for the interior
NE is that φ(x∗) = 0 and φ̂(x̂∗) = 0. Then, it yields



[
φ(x∗)−φ(x̂∗)

]
−D>(x∗−x̂∗) = −β−D>x∗. Multiplying

by (x∗ − x̂∗)>, we observe that

− (x∗ − x̂∗)>(β + D>x∗)

=(x∗ − x̂∗)>
[
φ(x∗)− φ(x̂∗)

]
− (x∗ − x̂∗)>D>(x∗ − x̂∗)

(a)

≤ (x∗ − x̂∗)>
[
φ(x∗)− φ(x̂∗)

]
(b)

≤ − lm‖x∗ − x̂∗‖2.

The inequality (a) holds because D> is designed to be a
positive semidefinite matrix (See Lemma 1). The inequality
(b) is exactly from Eq. (6). Thus there holds (x∗−x̂∗)>(β+
D>x∗) ≥ lm‖x∗ − x̂∗‖2 > 0.

Further considering the Cauchy–Schwarz inequality, we
finally obtain a bound on the distance

‖x∗ − x̂∗‖ (9a)

≤‖β‖+ ‖D‖‖x∗‖
lm

(9b)

≤

√
na+

√∑
i∈V(4|N|2i + 5|Ni|+ 4)a‖x∗‖

lm
. (9c)

The proof is now completed. �

Remark 1. The upper bound (9c) is very conservative
because it considers the worst-case scenario in which all
qij , βi,∀i, j ∈ V take their maximum values. In comparison,
the upper bound (9b) is a relatively small bound, which is
more likely to happen with high probability in realization.

V. LINEAR-QUADRATIC GAMES

A practical challenge of Algorithm 1 is how to select
the Laplace parameters a and λ that can ensure certain
differential privacy requirement. The selection depends on
the class of payoff functions and the design choice of W-
adjacency. In this section, we analyze a benchmark game
whose payoff functions are in the linear-quadratic form.

Denote the adjacency matrix of the interac-
tion/communication network by G ∈ Rn×n, with each
entry gij ∈ R denoting whether player j ∈ V is linked to
player i ∈ V and also indicating the linkage intensity.

We now impose the assumption of linear-quadratic games.

Assumption 2. The payoff functions of a linear-quadratic
game are set as

fi(xi,x−i) = −1

2
x2i + bixi +

∑
j∈V

gijxixj , ∀i ∈ V, (10)

where bi ∈ R≥0 represents the marginal benefit of player i.

Since each player i’s payoff functions is now parameter-
ized by the parameters gij and bi. Hence, it is reasonable to
specify W-adjacency on these parameters. For example, we
specify a definition of µ-adjacency for LQ games.

Definition 6 (µ-adjacency). Consider linear-quadratic pay-
off functions f and f ′. They are said to be µ-adjacent if there

exists i0 ∈ V such that

gi1 = g′i1, . . . , gin = g′in, bi = b′i, i 6= i0; (11a)
max{gi01 − g′i01, . . . , gi0n − g

′
i0n, bi0 − b

′
i0} ≤ µ. (11b)

In what follows, we first present how the Laplace pa-
rameters a and λ are selected to guarantee (ε, δ)-differential
privacy for one-dimensional truncated Laplace mechanism,
and then generalize this result to differential private LQ
games.

A. One-dimensional Truncated Laplace Mechanism

The work of [29]–[31] investigated how the Laplace
parameters are chosen to meet the differential privacy cri-
terion in the one-dimensional case. As presented in (9c),
Algorithm 1 leads to a biased perturbed NE. As a result, a
stringent analysis is required to determine the lower bounds
of the Laplace parameters that can produce a less biased per-
turbed NE. Compared with [29], the following result relaxes
the requirement for the Laplace parameters to guarantee the
differential privacy, and gives the tight lower bounds for a
and λ in the one-dimensional case.

We consider one-dimensional truncated perturbation
mechanism. Let D be the space of datasets of interest.
Suppose there is a query as a function y : D → R. Given D, a
randomized mapping K will release the one-dimensional re-
sponse K(D) that is the summation of the true query answer
y ∈ R and a random noise η ∈ [−a, a] following Ltr(a, λ),
K(D) = y(D) + η. The sensitivity of one-dimensional true
query is then given by ∆y = maxD1,D2∈D |y(D1)−y(D2)|.
The randomized mapping K gives (ε, δ)-differential privacy
if for any two datasets D1, D2 ∈ D differing in at most one
element, and all K ⊆ range(K), there holds

P(K(D1) ∈ K ) ≤ eεP(K(D2) ∈ K ) + δ. (12)

Lemma 2. Given the privacy parameters 0 < δ < 1
2 , ε >

0, the randomized mapping K preserves (ε, δ)-differential
privacy if

λ ≥ ∆y

ε− ln(1− δ)
, (13a)

a ≥ max
{

∆y, λ ln

(
e

∆y
λ − 1

2δ
+ 1

)}
. (13b)

Proof. We are seeking to show that for any D1, D2 ∈ D
differing in at most one element, for any subset K ⊆
range(K), Eq. (12) is satisfied.

Without loss of generality, we let y(D1) ≤ y(D2). Given
K ⊆ range(K), there are 5 cases to consider, each of which
should render Eq. (12) to be satisfied.

1. K ⊆ (−∞,−a+ y(D1)] : It is true that 0 ≤ eε · 0 + δ.
2. K ⊆ [−a+y(D1),−a+y(D2)] : First, since δ < 1

2 , it
is impossible to find the configuration for a and λ that
can make Eq. (12) valid when a ≤ ∆y. Second, we now
consider y(D2) − y(D1) ≤ ∆y < a. For any D1 and
D2 differing in at most one element, to satisfy Eq. (12),



we are going to show that the probability mass in the
interval [−a+ y(D1),−a+ y(D2)] does not exceed δ:∫

K

Be
−|y−y(D1)|

λ dy =Bλ(e
−a+y(D2)−y(D1)

λ − e
−a
λ )

≤Bλ(e
−a+∆
λ − e

−a
λ ) ≤ δ.

The first inequality holds because e
−a+y(D2)−y(D1)

λ in-
creases when y(D2)−y(D1) increases, while the second
inequality comes from the condition (13b).

3. K ⊆ [−a + y(D2), a + y(D1)] : Equation (12)
can be written as

∫
K Be

−|y−y(D1)|
λ dy ≤

eε
∫

K Be
−|y−y(D2)|

λ dy+δ. Using triangle inequality |y−
y(D2)| ≤ |y−y(D1)|+|y(D1)−y(D2)| and combining
the condition (13a), it is sufficient to show that∫

K Be
−|y−y(D1)|

λ dy ≤ eε−
∆
λ

∫
K Be

−|y−y(D1)|
λ dy + δ,

or further, 1 ≤ eε−
∆y
λ +δ ≤ eε−

∆y
λ + δ∫

K
Be
−|y−y(D1)|

λ dy
.

4. K ⊆ [a + y(D1), a + y(D2)] : It is true that 0 ≤
eε
∫

K Be
−|y−y(D2)|

λ dy + δ.
5. K ⊆ [a+ y(D2),∞] : It is valid that 0 ≤ eε · 0 + δ.
In all, under conditions (13a) and (13b), the randomized

mapping K preserves (ε, δ)-differential privacy. �

B. Differentially Private LQ Games

In what follows, Laplace parameter conditions are given to
ensure certain differential privacy requirement for LQ games.

Stack the non-zero elements qij into q ∈ Rm with m =
n +

∑
i∈V |Ni|. Also stack gij into g ∈ Rm such that each

element in g is matched with the corresponding element in
q. In particular, if the kth element of q is qij , then the kth

element of g is gij . The dimension of
[
g
b

]
is l = 2n +∑

i∈V |Ni|. Further define p = 1 + maxi∈V |Ni|.

Theorem 4. Consider a LQ game. Then given any ε, δ, µ >

0, the mapping M̂(g,b) =

[
g − q
b− β

]
achieves (pε, pδ)-

differential privacy under µ-adjacency if

λ ≥ µ

ε− ln(1− δ)
, (14a)

a ≥ max
{
µ, λ ln

(
e
µ
λ − 1

2δ
+ 1

)}
. (14b)

Proof. Consider two µ-adjacent linear-quadratic payoff func-
tions f and f

′
that are uniquely determined by the pairs (g,b)

and (g′,b′), respectively.
Denote v = [g> b>]> ∈ Rl and v′ = [g′> b′>]> ∈ Rl.

Also define Vperturbed = {1, 2, . . . , l}. Due to µ-adjacency,
there exists i0 ∈ V such that the conditions (11a) and (11b)
hold. We denote by Vdiff the indices of bi0 and gi0j , j ∈
Ni0 ∪ {i0}, in v. The conditions (11a) and (11b) indicate
that 1) v and v′ differ in at most |Ni0 |+ 1 elements; 2) and
for any i ∈ Vdiff , we have |vi − v′i| ≤ µ.

Note that each vi, i ∈ Vdiff , is independent of any other
vj , j ∈ Vperturbed 6= i. We decompose M̂ and further notice
that each component M̂i(vi), i ∈ Vdiff , can be viewed as a
randomization of vi. We then apply Lemma 2 with ∆y = µ.

It is therefore straightforward that when the conditions (14a)
and (14b) are satisfied, each component M̂i(vi), i ∈ Vdiff ,
preserves (ε, δ)-differential privacy.

We now examine the probability P(M̂(v) ∈ M̂ ) =∏
i∈Vperturbed P(M̂i(vi) ∈ M̂i). There are at most |Ni0 |+ 1

different elements indexed in Vdiff between v and v′,
while the remaining elements indexed in the set Vsame :=
(Vperturbed − Vdiff ) are the same. Also, combining the
fact that each component M̂i(vi), i ∈ Vdiff , is (ε, δ)-
differentially private, as a consequence, we can substitute∏
i∈Vperturbed

P(M̂i(vi) ∈ M̂i)

=
∏

i∈Vsame

P(M̂i(vi) ∈ M̂i)
∏

i∈Vdiff

P(M̂i(vi) ∈ M̂i)

≤
∏

i∈Vsame

P(M̂i(v
′
i) ∈ M̂i)

∏
i∈Vdiff

(eεP(M̂i(v
′
i) ∈ M̂i) + δ)

If we focus on the second product term and look at the
additive contribution of each of the δ terms, of which there
are |Ni0 |+1, we notice that they are only ever multiplied by
probabilities that are at most one Therefore, each contributes
at most an additive δ:∏

i∈Vdiff

(eεP(M̂i(v
′
i) ∈ M̂i) + δ)

≤e(|Ni0 |+1)ε
∏

i∈Vdiff

P(M̂i(v
′
i) ∈ M̂i) + (|Ni0 |+ 1)δ

Then, we have∏
i∈Vperturbed

P(M̂i(vi) ∈ M̂i)

≤ e(|Ni0 |+1)εP(M̂(v′) ∈ M̂ ) + (|Ni0 |+ 1)δ.

Note that i0 can be any i ∈ V. Therefore, M̂ releases
(pε, pδ)-differential privacy with p = 1 + maxi∈V |Ni|. �

Remark 2. Note that the privacy guarantee depends in
a crucial way on how the notion of adjacency is defined.
Although we only prove the differential privacy from f to f̂
for LQ games with µ-adjacency in Definition 6, it serves as
a tutorial example and can be applied to other monotone
games as long as players’ payoff functions are explicitly
given.

VI. NUMERICAL EXAMPLES

Consider a LQ game with 10 players. Players are arranged
in a ring lattice with each player connected to |Ni| = 4,∀i ∈
V, neighbors. (Thus, p = 5.) Each linkage intensity is set as
0.08. The action space considered is relatively large, xi ∈
[0, 100],∀i ∈ V, to ensure interior original NE and perturbed
NE. According to [28], the original NE is calculated by x∗ =
(I−G)−1b.

Experiment 1 (Validation of Theorems). We consider µ =
0.01 and choose two parameter configurations

ε1 = ln 2, δ1 = 0.05, a1 = 0.034, λ1 = 0.013; (S1)
ε2 = 3 ln 2, δ2 = 0.15, a2 = 0.015, λ2 = 0.0045, (S2)



where a1, a2, λ1, λ2 are selected upon Theorem 4 to guaran-
tee differential privacy.

Under each parameter configuration, we conduct 500
executions, in each of which we apply Algorithm 1. Each
perturbed NE is calculated by x̂∗ = (I−G+D)−1(b−β).
We then compute ‖x∗ − x̂∗‖, and γ according to (9b).

In Fig. 1, we plot the comparison of γ and ‖x∗ − x̂∗‖
between two parameter configurations (S1) and (S2). The
result of Fig. 1 is consistent with Theorem 3 that the distance
between the original NE and the perturbed NE is bounded
by γ while preserving differential privacy. �

Experiment 2 (Benchmark with Existing Methods). Based
on Experiment 1, we further plot each player’s original NE
and distribution of the perturbed NE under two parameter
configurations (S1) and (S2) among 500 executions.

The result of Fig. 2 shows that most perturbed NE under
(S1) and (S2) are located to the left of the original NE. The
parameter configuration (S2) has a weaker requirement for
differential privacy. The perturbed NE under (S2) are closer
to the original NE, implying that one has to sacrifice the
differential privacy of payoff functions for the accuracy of
NE.

To further show the relevance among the accuracy of NE,
the privacy requirement ε and the Laplace parameter a, we
fix δ = 0 and plot ‖x∗ − x̂∗‖/‖x∗‖ versus ε and a each
for 50 executions in Fig. 3. Roughly speaking, it shows that
as ε decreases (stricter privacy), the Laplace parameter a
increases and thus the accuracy of NE decreases.

Compared with existing methods of state/communication
perturbation [20], [23], [32], we both show the tradeoff be-
tween the accuracy of the optimal points/NE and the privacy
of objective functions/payoff functions, However, they prove
that limk→∞ E(‖x(k)−x∗‖2) has a upper bound depending
on convergence rate and privacy level. According to the
structure of their privacy algorithm, they might produce a
asymptotically unbiased perturbed NE. Unlike those results,
Algorithm 1 always produces a biased perturbed NE. It arises
from E(qii) > 0,∀i ∈ V that are necessary to ensure the
concavity of the perturbed payoff function. However, they

Fig. 1: The comparison of γ and ‖x∗ − x̂∗‖ between two
parameter configurations (S1) and (S2).

Fig. 2: The original NE and the distribution of the perturbed
NE under the parameter configurations (S1) and (S2). The y-
axis represents the number of times that player i’s perturbed
NE action occurred within the intervals set by the x-axis
among 500 executions.

Fig. 3: The plot of ‖x∗− x̂∗‖/‖x∗‖ versus ε and a each for
50 executions.

have to add perturbation to communications at all time steps.
For example, in [32], it takes roughly 4000 steps to reach
a close distance from x∗, in each of which perturbation
is added to players’ state. In contrast, we only add per-
turbation to the original payoff functions once, after which
the computation of the distributed NE is deterministic. The
number of linear-quadratic perturbation coefficients (non-
zero qij , βi,∀i, j ∈ V) generated by Algorithm 1 is only
60, which is far less than theirs. �

Experiment 3 (Tradeoff between Privacy and Payoffs).
Upon Experiment 1, we further compute the players’ payoffs
at the original NE and the perturbed NE under two parameter
configurations, f(x∗) and f(x̂∗), and plot them in Fig. 4,.

From the result of Fig. 4, it is not surprising that players’
payoffs at the perturbed NE under (S1) and (S2) are always
lower than those at the original NE. Players’ payoffs at the
perturbed under (S1) are lower than those at the perturbed



NE under (S2). It indicates that the sacrifice of the accuracy
of NE for payoff functions’ privacy leads to the decline of
players’ payoffs. �

Fig. 4: Players’ payoffs at the original NE, the perturbed NE
in (S1), and the perturbed NE in(S2). The y-axis represents
the value of player i’s payoffs.

VII. CONCLUSION

In this work, we investigated network games in which
players participated in information aggregation processes
under the differential privacy requirement for players’ pay-
off functions. The LLQFP mechanism was proposed. We
turned to monotone games, demonstrating that the LLQFP
mechanism preserved the concavity property and generated
a bounded perturbed NE which was controllable by Laplace
parameter tuning. We also looked at LQ games as a pedagog-
ical example to explain, given what Laplace parameter con-
ditions, differential privacy of the LLQFP mechanism could
be ensured. Finally, numerical examples were presented to
demonstrate the benefits of the LLQFP mechanism.
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