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Abstract— In this paper, we focus on network structure
inference problem for linear-quadratic (LQ) games from best-
response dynamics. An adversary is considered to have no
knowledge of the game network structure but have the ability
to observe all players’ best-response actions and manipulate
some players’ actions. This work presents a comprehensive
framework for network learning from best-response dynamics
in LQ games. First of all, we establish theoretic results that
characterize network structure identifiability and provide nu-
merical examples to demonstrate the usefulness of our theoretic
results. Next, in the face of the inherent stability and sparsity
constraints for the game network structure, we propose an
information-theoretic stable and sparse system identification
algorithm for learning the network structure. Finally, the
effectiveness of the proposed learning algorithm is tested in
both synthesis networks and real networks. The connection
between network structure inference problem and classical
system identification theory is covered by our work, which
advances the literature.

I. INTRODUCTION

Game theory has been an essential tool in describing how
self-interested individuals, referred to as players, develop
rationality and competition [1]. In a game with multiple
players, each player chooses her action to maximize her pay-
offs determined by her payoff function. The payoff function
of each player relies on not only her own action, but also
other players’ actions, resulting in underlying competition.
Many games are played over networks, in the sense that
players are interconnected through a network [2]. In many
aspects of our life, network games are extensively employed
to model strategic interactions among interconnected players,
such as online E-commerce in social networks [3], route
planning in transportation networks [4], and games arising
in wireless communication networks [5]. Significant progress
has been made in computing equilibrium solution concepts
such as Nash equilibrium (NE) and correlated equilibrium,
and identifying the most influential players in network games
[6]–[8]. All of these works are in the field of algorithmic
game theory and are concerned with analyzing the properties
of network games on known graphs.

Another vibrant stream of game literature focuses on
network structure inference where players’ behavior actions
are collected to reconstruct the network structure. Network
structure inference problem is also related to graphical learn-
ing problems in the fields of machine learning and signal
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processing. Many approaches have been proposed, differing
in the applied models such as probabilistic graphical models
[9], [10], physically-motivated models [11] and signal pro-
cessing models [12], [13]. As for learning network structure
in the game settings, there also has been a considerable
amount of work. In the continuous-action setting, different
methods were proposed according to different action and
payoff function settings (e.g., non-parametric payoffs in a
recent work [14]). As for the discrete-action setting, the work
of [15] proposed a maximum-likelihood approach to learning
linear influence games with binary actions. In [16], the
authors proposed a l1-regularized logistic regression model
to learn linear influence given observations over the pure-
strategy NEs. The work of [17] studied a learning problem of
LQ games on networks, over which a number of independent
games were played with all NE actions observed for learning
the graph.

Problem of Interest In this paper, we consider a LQ game
over a network where each player’s payoffs is a LQ function
of her own action and other players’ actions. Each player par-
ticipating in this game is assumed to play her best responses
in a sequential decision process. Each player will decide her
next action as the decision that maximizes her payoff given
other players’ current actions [28]. We assume that there is an
adversary who does not know the game network structure but
is capable of observing all players’ best-response actions and
manipulating some players’ actions. The aim of the adversary
is to infer the game network structure from its observations
and manipulations.

The reasons that the problem is worth studying are as
follows. First, this problem will be naturally a dynamic ex-
tension of network structure inference from static NEs in LQ
games in [17]. Second, when network games are considered
to study the behaviors of players, NE is not the only behavior
model to explain players’ strategic decision-making. Instead,
best response is also a possible model to describe the players’
strategic behavior in a sequential decision-making manner. In
practice, players may not able to take the NE action at the
beginning of networks games because players cannot get or
anticipate complete information about other players’ payoff
functions [18].

There are two practical issues that need to be addressed.
It is expected that players’ best-response actions should con-
verge to a NE, which means the network structure should be
stable [19]; the empirical analysis has shown that real-world
social networks are typically sparse [20]. As a result, network
structure inference from best-response dynamics becomes
a stable and sparse system identification problem. System
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identification of stable systems is a well-studied problem
in the literature. In [21], a frequency domain solution to
linear system identification of a stable system was provided
in presence of undermodeling. In [22], sharp finite-time error
analysis was derived based on ordinary least-squares, which
was suitable for both stable and unstable systems. In [23], a
method for projecting an arbitrary square matrix to the non-
convex set of asymptotically stable matrices was proposed,
whose projection was optimal in an information-theoretic
sense. Rich results of sparse system identification also have
been well established, most of which are based on general
penalties [24]. A specific line of penalty type is the method
of l1-regularized penalization [25], [26].

Contributions In this paper, we have made the following
contributions:
(i) We manage to establish theoretic results characterizing

network structure identifiability from the view of the
adversary: network structure identifiability is shown to
be equivalent to certain controllability conditions;

(ii) Taking into account the intrinsic stability and sparsity
properties of the game network structure, we propose a
stable and sparse system identification framework for
learning the network structure. In the algorithm, we
first solve an l1-regularized least square problem arising
from players’ best-response action data, and then project
the solution to the set of stable matrices by applying the
method in [23];

(iii) We conduct extensive experiments on synthetic and
real-world networks to validate the effectiveness of the
proposed learning algorithm.

Our results provide a complete answer to network struc-
ture inference for LQ games from best-response dynam-
ics. By introducing stable and sparse system identification
into network structure inference for LQ games, we cover
the connection between network structure inference for LQ
games and classical system identification theory, advancing
the literature.

Organization The remainder of the paper is organized as
follows. In Section II, we introduce LQ games, best-response
dynamics, and the adversary model, followed by a problem
description. In Section III, we investigate the identifiability
problem under which conditions the network structure can
be uniquely identified by the adversary from the perspective
of control theory. In Section IV, we propose an information-
theoretic algorithm to learn the network structure, assuming
that the network structure is stable and sparse. In Section V,
experiments for the proposed algorithm are conducted with
a comprehensive discussion about the performance of ef-
fectiveness. This paper ends with concluding remarks in
Section VI.

II. PROBLEM FORMULATION

A. Linear Quadratic Game

A network game is associated with a graph. The nodes
of the graph represent the players of the network game, and

the links define the interdependency among the players in
payoffs. In an n-player network game with LQ payoffs, each
player i ∈ V := {1, 2, . . . , n} chooses her action xi ∈ R that
can maximize her payoffs Ji described by

Ji = αixi −
1

2
x2
i +

n∑
j=1

gijxixj . (1)

In (1), the first two terms characterize the benefit of player i
by taking her own action xi, where the parameter αi > 0 is
called the marginal benefit, capturing the level of selfishness
of player i. The last term of this payoff function reflects
the peer effect suffered by player i from the actions of other
players: if gij > 0, players i and j are strategic complements
(friends); if gij < 0, players i and j are strategic substitutes
(opponents); if gij = 0, there is no influence on player i
from player j.

Let G ∈ Rn×n be the matrix formed by the gij , i.e.,
the ij-entry of G is gij . The interaction graph G = (V,E)
underlying the game (1) is then defined as the induced graph
of G, where a directed link (j, i) ∈ E if and only if gij 6= 0.
Note that gii = 0 as we suppose there exists no self-loop in
the graph G.

B. Nash Equilibrium and Best-response Dynamics

Nash equilibrium A common solution concept in game
theory is called NE, and it is a profile of actions under which
no one will benefit by changing her action when others keep
theirs unchanged. We denote the vector x? := [x?1, . . . ,x

?
n]
>

as the NE of the LQ game introduced previously. We adopt
a critical assumption in the following.

Assumption 1: The spectral radius of the matrix G, de-
noted by ρ(G) is less than 1.
It guarantees the existence and uniqueness of pure-strategy
NE x? in LQ games. Moreover, as derived in [8], the form
of NE is x? = (I−G)−1α, where α := [α1, . . . , αn]

>.

Best response For players participating in a game, gen-
erally, NE can not be played immediately when the game
starts since the payoff functions are held in private. Rather,
in practice, players’ behaviors are better explained in a
sequential decision process [27]. Let time be indexed in
T := {0, 1, 2, . . . , T}, and let xi(k) be player i’s decision at
any time k ∈ T. Then, it is reasonable to assume that any
rational player at any given time k will decide her action
at the next time k + 1 as the decision that maximizes her
payoff given other players’ current decisions at time k. This
is known as best responses [28]. As a result, in repeated
plays for LQ games, the dynamics of xi(k) obey

xi(k + 1) = argmax
xi

Ji(xi,x−i(k))

= αi +

n∑
j=1

gijxj(k), i ∈ V, t ∈ T. (BR)

In practice, it is expected that the best-response dynamics
(BR) should converge to a NE [19], which is guaranteed by
Assumption 1 according to the work [8].
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C. The Adversary Model

In this paper, we investigate the possibility of inferring
the sensitive network structure from the perspective of an
adversary. Specifically, an adversary refers to an individual
who is intended to infer the relationship through injecting
adversarial perturbations and monitoring the players’ actions.

We assume that the adversary is able to observe all
players’ best-response actions and manipulate some play-
ers’ actions. We term such players as action-compromised
players, indexed in the set M ⊆ V. Then V \ M contains
benign players who just follows (BR). For i ∈ M, we model
the manipulation of the adversary as a perturbation ui(k)
over the best response actions of player i. The best response
of the players in the presence of the action-compromised
players becomes

xi(k + 1) = argmax
xi

Ji(xi,x−i(k)) + IM(i)ui(k)

= αi +

n∑
j=1

gijxj(k) + IM(i)ui(k), i = 1, . . . , n.

(p-BR)
where IM(i) is the indicator function: IM(i) = 1 if i ∈ M;
IM(i) = 0 otherwise.

Real-world Interpretations Fake reviews and misinfor-
mation has been shown to be ubiquitous in the study of
social bots in online social networks. Many works have
characterized the role and the ability of social bots in
the manipulation of social media [29], [30]. Therefore, the
proposed adversary model captures this critical characteristic
of real-world online social networks.

D. Problem Definition

In this paper, we are interested in whether and how the
underlying graph G (or equivalently, its adjacency matrix
G) is exposed to risks of being uniquely identified by the
adversary. To be precise, the adversary holds information

I :
{
ui(k), i ∈ M,k ∈ T

}⋃
(2a){

xj(k), j ∈ V, k ∈ T
}

(2b)

with the ui(k) and xi(k) being produced by the perturbed
best response (p-BR). The problems of interest from the
perspective of the adversary lie in
• Identifiability: Whether it is possible to uniquely iden-

tify G from I, perhaps with the help of strategically
designed ui(k), i ∈ M, k ∈ T.

• Learning: How to build effective learning frameworks
for estimating G from I, perhaps with prior structural
information such as stability and sparsity.

For the above-defined problems, there are three critical
points worth mentioning. First, best-response dynamics is a
good start to investigate the game network structure inference
problem given observations from the players’ best-response
dynamics. Even though the form of best response dynamics
is simple, the learning problem is still challenging. Second,
the “identifiability” problem characterizes the fundamental
limitation of the adversary’s learning capability on a theoretic

level; on the other hand, the “learning” problem focuses on
designing computational algorithms that would instruct the
adversary to infer the network structure on a practical level.
These two parts are complementary and consist a thorough
study of learning the network structure from best-response
dynamics. Third, how inherent properties of stability and
sparsity for the network structure can be integrated into this
learning problem has been largely open under the dynamic
setting of games.

III. NETWORK STRUCTURE IDENTIFIABILITY

In this section, we look into identifiability conditions under
which the network structure can be uniquely identified by the
adversary. Different identifiability conditions are provided
under two scenarios: the adversary injects no perturbation
on players’ actions, or the adversary injects perturbations on
the actions of a subset of players.

For notational simplicity, we denote the cardinalities of
the set M as m. The index of action-compromised players
is sorted in ascending order with M := {p1, . . . , pm}. For
example, if the network game has three action-compromised
players (i.e., player 1, 3, 6), then m = 3 and M = {p1 =
1, p2 = 3, p3 = 6}.

We also denote the aggregated action profile of all players
and the overall injected perturbations at time k by x(k) :=
[x1(k), . . . ,xn(k)]

> ∈ Rn and u(k) := [ui(k), i ∈ M]> ∈
Rm, respectively.

We introduce B ∈ Rn×m to represent the set of M.
Specifically, the (i, j)-th entry of matrix B satisfies that

Bi,j =

{
1, i = pj ;

0, otherwise.
(3)

From classical control theory [31], for two matrices A ∈
Rn×n and B ∈ Rn×r, the matrix pair (A,B) is said to be
controllable if the n × nr controllability matrix (where the
subscript n denotes the number of block columns)

Cn(A,B) :=
[
B AB . . . An−1B

]
has rank n.

Controllability is regarded as an critical property of a
control system. Basically, in a control system, controllability
is the ability of the system to shift from the initial state
to a specified state by applying input in a finite amount of
time. In the sequel, we establish a control system based on
the best-response dynamics, and link the determination of
identifiability for the adversary with the property of control
system (i.e., controllability).

A. Main Results

We now present the following result that if the adversary
has access to all players’ actions but has no ability to
add action perturbations (i.e., M = ∅), network structure
identifiability can be precisely characterized by a special
form of controllability.

Theorem 1: Assume M = ∅. Let the adversary has access
to I from (p-BR). Then G can be uniquely identified by the
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adversary for sufficiently large T if and only if (G,x(1)−
x(0)) is controllable.

Proof. Regarding the action dynamics described in (p-BR),
we define the action difference and the perturbation dif-
ference as yi(k) := xi(k + 1) − xi(k) and vi(k) :=
ui(k + 1) − ui(k) respectively, in order to eliminate the
effect of marginal benefit αi.

Adding the observation ports to the action dynamics
(p-BR), we arrive at the compact form of an input-output
linear invariant system:

y(k + 1) = Gy(k) +Bv(k), (4a)
z(k) = y(k), (4b)

in which the state y(k) := [y1(k), . . . ,yn(k)]
>, the input

signal v(k) : [ui(k + 1) − ui(k), i ∈ M] ∈ Rm, and B ∈
Rn×m. The nonzero entries of matrices B correspond to the
set of action-compromised players. Hence, the adversary has
a trajectory of the input/output signal of this system (4a):
I := {v(k), z(k), 0 ≤ k ≤ T, k ∈ N}.

When M = ∅ and I is accessible, (4a) is degenerated as

z(k + 1) = y(k + 1) = Gy(k).

Then, the single trajectory satisfies

Z = GY,

where Z = [y(1),y(2), . . . ,y(T )] ∈ Rn×T and Y =
[y(0),y(1), . . . ,y(T − 1)] ∈ Rn×T .

This equation can be decoupled as several linear equations:
Y >[G>]i = [Z>]i,∀i ∈ V with [·]i representing the i-th
column of a matrix. Then, G is uniquely constructable from
the trajectory T if and only if each of these linear equations
has a unique solution, i.e., rank(Y ) = rank([Y >, [Z>]i]) =
n, ∀i ∈ V.

Note that Y = [y(0),y(1), . . . ,y(T − 1)] =
[y(0),Gy(0), . . . ,GT−1y(0)], of which the vectors span
a G-cyclic subspace of Rn, denoted by H(y(0);G). This
subspace is an invariant subspace for G, in the sense that
GH(y(0);G) ⊆ H(y(0);G), which validates rank(Y ) =
rank([Y >, [Z>]i]). Moreover, the condition rank(Y ) = n
holds if and only if (G,y(0)) is controllable. �

The next result characterizes the ability to identify G by
linear feedback perturbations, namely u(k) = Kx(k) for
K ∈ Rm×n.

For a matrix A, we denote the image of matrix A by
Im(A). It is the span of the vectors of the matrix A or linear
transformation A.

We now introduce a lemma coming from [31, Lemma 2.2].
Lemma 1: Let 0 6= y(0) ∈ Im(B). If (G,B) is

controllable, there exists K such that (G + BK,y(0)) is
controllable.

Theorem 2: Assume M 6= ∅. Let the adversary has access
to I from (p-BR). Suppose u(k) is generated by u(k) =
Kx(k). Then there exists K such that G can be uniquely
identified if the following conditions hold:
(i) 0 6= x(1)− x(0) ∈ Im(B);

(ii) (G,B) is controllable.

Proof. When M 6= ∅, (4a) is degenerated as

z(k + 1) = y(k + 1) = Gy(k) +Bv(k).

Setting v(k) = Ky(k), there holds

y(k + 1) = (G+BK)y(k).

According to Theorem 1, G can be uniquely identified by
the adversary from the information I if and only if (G +
BK,y(0)) is controllable.

Since conditions (i) and (ii) are satisfied, Lemma 1 holds
that there exists K such that (G+BK,y(0)) is controllable.
Therefore, there exists K such that G can be uniquely
identified. �

B. Numerical Examples

In what follows, we provide numerical examples to illus-
trate the usefulness of the conditions in Theorems 1 and 2.

Consider a 4-player LQ game. The LQ game is associated
with an interaction graph G shown in Fig. 1. The correspond-
ing adjacent matrix is

G =


0 0 0 0
g21 0 0 0
g31 0 0 g34
g41 0 0 0

 .
The same setting is used in the following three numerical
examples.

Fig. 1: An example of 4-player network structure.

Example 1: Suppose no perturbation is injected into the
players’ actions, i.e., M = ∅. We can compute that
rank(Cn(G,x(1) − x(0))) is always less or equal to 3 no
matter what value x(1)−x(0) takes. According to Theorem
1, the adversary cannot identify the network structure from
its information I. �

In the following two examples, we consider two ways of
adversary perturbations shown in Fig. 2

Example 2: Suppose the adversary is designed to influ-
ence the actions of players 1 and 2, i.e., M = {1, 2}
(see blue perturbations in Fig. 2). We then obtain B =[
1 0 0 0
0 1 0 0

]>
. It is obvious that the controllability con-

dition in Theorem 2 holds since rank(Cn(G,B)) = 4.
Moreover, to guarantee the satisfactory of the first condition
in Theorem 2, the initial state can be designed as x(0) =
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Fig. 2: Two ways of adversary perturbations highlighted in
blue and red.

(I − G)−1(α − e1), where e1 is a unit vector only with
the first entry to be one, and the inverse exists according to
Assumption 1. According Theorem 2, G is learnable. �

Example 3: Suppose the adversary is designed to influ-
ence the actions of players 2 and 4, i.e., M = {2, 4}
(see red perturbations in Fig. 2). We then obtain B =[
0 1 0 0
0 0 0 1

]>
. The controllability condition in Theorem

2 does not hold because rank(Cn(G,B)) = 3. The pair
(G,B) is uncontrollable. Clearly, the unidentifiability of
matrix G is a direct consequence caused by which subset
of players is chosen by the adversary to perturb. �

From Examples 1, 2 and 3, it reveals that although the
adversary cannot identify the network structure in Fig 1
without perturbations, strategically injecting perturbations on
a subset of players can benefit the adversary in identifying the
network structure. Moreover, the subset of players it chooses
could affect the ability of network structure identification.

IV. NETWORK STRUCTURE LEARNING

In this section, we develop a framework for identifying
the network structure for LQ games G from players’ best
response action data.

A. The Framework: Stable and Sparse System Identification

Let S be the set of stable matrices in Rn×n, i.e., S :=
{A ∈ Rn×n : ρ(A) < 1}. Assumption 1 requires that
G ∈ S. Moreover, in practice, G is typically a sparse
matrix. Sparsity is a fundamental characteristic of numerous
biological, social, and technological networks references
[20]. In summary, the adversary attempts to learn a stable
and sparse graph matrix G from its information I raising
from (p-BR).

Upon the action dynamics (p-BR), we have already arrived
at the action difference dynamics (4a) in the proof of
Theorem 1:

y(k + 1) = Gy(k) +Bv(k).

Note that the practical observations of the x(k) (and thus,
y(k)) captured by the adversary are subject to the influence
of noises. That is ym(k) = y(k)+ek. It will be the actually
observed actions, where ek ∈ Rn, k ∈ T are stationary

random noises with zero mean and co-variance Sn. So the
adversary has access to

Z =
[
ym(1) ym(2) · · · ym(T )

]
; (5)

Y =
[
ym(0) ym(1) · · · ym(T − 1)

]
; (6)

V =
[
v(0) v(1) · · · v(T − 1)

]
. (7)

We propose the following Stable Sparse System Identifica-
tion (SSSI) for learning the network structure from full player
action observations:

GSSSI = arg inf
G∈S

1

2
||Z −GY −BV ||2F + θ||G||1.

(SSSI)

B. An Information-Theoretic Algorithm

As S is an open and nonconvex set, solving (SSSI) is
numerically challenging. We propose to adopt the recently
developed algorithm for stable system identification in [23],
where an information-theoretic projection onto S was used
to soften the computational complexity by solving Riccati
equations. This leads to Algorithm 1.

Algorithm 1 Information-theoretic Projection SSSI Algo-
rithm
Input: Z, Y, V,B

Output: Network structure G

1: Solve the regularized least square solution

Ĝ = argmin
G

1

2
||Z −GY −BV ||2F + θ||G||1; (8)

2: Random generate δ ≥ 0;
3: Solve the algebraic Riccati equation (DARE) with the

unique solution Pδ:

P = I+ Ĝ>PĜ− Ĝ>P(P+ (2δSn)
−1)−1PĜ>;

(9)

4: Compute Lδ = −(Pδ + (2δSn)
−1)−1PδĜ;

5: Return GSSSI = Ĝ+ Lδ .

V. EXPERIMENTS

In this section, experiments are designed to evaluate the
effectiveness of Algorithm 1 in both synthesis networks and
real networks.

A. Synthesis Networks

In this subsection, we examine the performance of Al-
gorithm 1 on three types of synthetic networks generated
using the Erdős–Rényi (ER), the Watts–Strogatz (WS), and
the Barabási–Albert (BA) models. The networks under eval-
uation have n = 100 nodes.

Network Setup In the ER graph, each link takes place with
probability per = 0.1 independently with all the other links;
in the WS graph, each node’s average degree and the random
rewiring process is set to be is kws = 5 and pws = 0.2,
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respectively; in the BA graph, a new node at each time step is
created to connect to mba = 2 existing nodes via preferential
attachment. After the realization of each graph, a nonzero
random number is selected between −5 and 5 as the weight
for each link. Each entry of the adjacency matrix G is then
divided by the largest absolute value of its eigenvalues to
ensure the stability G.

Data Generation A set M representing action-
compromised players is selected and a matrix B is created
according to (3). We then generate x(0), u(k), k ∈ T, and
α by considering x(0),u(k),α ∼ N(0, I), and simulate the
dynamics (p-BR) to obtain x(k), k ∈ T. The observation
noises follow a normal distribution ek ∼ ξ ∗ N(0, I) where
ξ represents the noise intensity level. Upon Eq. (5)-(7), we
finally obtain three matrices Z, Y, V .

Baselines We consider two baseline approaches: the stable
least square ((SLS)) and stable L2-regularized least square
((SL2LS)). The method of the stable least square is defined
by the optimization problem

inf
G∈S

1

2
||Z −GY −BV ||2F . (SLS)

The method of the stable L2-regularized least square solves

inf
G∈S

1

2
||Z −GY −BV ||2F + β||G||2F . (SL2LS)

Solving (SLS) and (SL2LS) is numerically
challenging. As in Algorithm 1, we propose to
solve ĜSLS = argminG

1
2 ||Z − GY − BV ||2F and

ĜSL2LS = argminG
1
2 ||Z − GY − BV ||2F + β||G||2F and

project them to their nearest stable ones by applying Eq. (9).

Results By applying Algorithm 1 and baselines to the
respective network settings, we obtain the network structures
Glearn. We then compare the outcomes against the ground
truth by the relative error

Err :=
||Glearn −GTruth||F
||GTruth||F

. (10)

For (SSSI) and (SL2LS) baselines, we provide the results
using the parameters θ and β that yield the greatest average
performance across 50 randomly generated graph instances.

First and foremost, we are to discover how the tra-
jectory length affects learning performance. We fix noise
level to be ξ = 0.1, use 6 different values of T =
{15, 20, 25, 30, 35, 40} and follow the aforementioned data
generation process. The learning performance of the three
methods versus trajectory length on the ER, WS, and BA
networks is illustrated in Fig. 3.

We next examine the robustness of the three methods in
the face of various levels of noise during the observations.
Let the trajectory length be T = 40 and the noise intensity
level take values in ξ = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.
The learning performance of the three methods versus noise
intensities on the ER, WS, and BA networks is shown in
Fig. 4. Clearly, in terms of reconstructing the weights for

the ground truth links, the (SSSI) outperforms the other two
baseline methods significantly. Moreover, the BA networks
appear to be more difficult to learn under (SSSI) in all cases,
compared to the ER graphs and WS graphs.

B. Real Networks
In this section, we investigate the performance of Al-

gorithm 1 for learning unweighted real networks where
gij ,∀i, j ∈ V, is either 0 or 1. In other words, we try to
solve the classification task of learning the real networks.
Since the real networks used are sparse, we use the area
under the curve (AUC) for the evaluation.

Indian Villages Dataset We consider learning social net-
works in 75 villages in southern rural India [32]. In each
village network, nodes represent households and links rep-
resent the connection between two households. The average
number of nodes and links per village network is 198.72 and
1782.99, respectively. In order to guarantee the stability of
G, each element of each village network’s binary adjacency
matrix is then normalized by the largest absolute value of its
eigenvalues.

Results We follow the same data generation process in
Section V-A. We apply Algorithm 1 to the respective settings
to learn village networks and compare the results against the
ground truth in a binary classification scenario.

First, we examine AUC versus trajectory length on 75
village networks. We fix noise level to be ξ = 0.3, set
4 different values of T = {10, 30, 50, 70} and obtain the
results in Fig. 5a. Clearly, AUC increases as trajectory length
increases.

We then discover how noise level affects the robustness of
Algorithm 1. We let trajectory length fixed to be T = 120
and noise level take values in ξ = {0.15, 0.2, 0.25, 0.3} and
present the results in Fig. 5b. It is straightforward to see that
AUC decreases as the noise level increases.

VI. CONCLUSIONS

In this work, we considered network structure inference
problem for LQ games from best-response dynamics. A
complete framework for network learning for LQ games from
best-response dynamics is presented. First, we provided theo-
retic results that characterized network structure identifiabil-
ity and demonstrated its usefulness with numerical examples.
Then, given the intrinsic stability and sparsity constraint of
network structure, we developed a stable and sparse system
identification algorithm for learning the network structure.
Lastly, the effectiveness of the proposed learning algorithm
was evaluated in both synthesis networks and real networks.
This work opened the door for understanding network struc-
ture inference problem for network games based on best-
response dynamics from the perspective of classical system
identification theory. We bridged the connection between
these two fields by introducing stable and sparse system
identification into network structure inference for LQ games.
Future work may include extensions of this line of research
to partial action observations of the adversary and general
payoff functions of players.
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(a) Erdos Renyi (b) Watts Strogatz (c) Barabasi Albert

Fig. 3: The relative errors from (SSSI), (SLS), (SL2LS) versus trajectory length over the ER, WS and BA networks.

(a) Erdos Renyi (b) Watts Strogatz (c) Barabasi Albert

Fig. 4: The relative errors from (SSSI), (SLS), (SL2LS) versus noise intensity level over the ER, WS and BA networks.

(a) AUC versus trajectory length (b) AUC versus noise level

Fig. 5: Learning performance (AUC) of Algorithm 1 on 75 Indian village network datasets.
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